An Improved Bat Algorithm Based on Lévy Flights and Adjustment Factors
Abstract
:1. Introduction
2. Enhanced Bat Algorithm
2.1. Bat Algorithm
2.2. Dynamically Decreasing Inertia Weight
2.3. Lévy Flights
2.4. Speed Adjustment Factor
2.5. The Pseudocode of the LAFBA
1. Define objective function , |
2. Set the initial value of population size n, and |
3. Initialize pulse rates and loudness |
4. Initialize the bat population (Equation (1)) |
5. Evaluate and find |
6. while t ≤ N_gen |
7. for = 1 to n |
8. Adjust frequency (Equation (2)) |
9. Update inertia weight (Equation (9)) and (Equation (11)) |
10. Update the velocity (Equation (8)) and position vector (Equation (13)) of the bat |
11. if (rand > ) |
12. Select a solution among the best solutions |
13. Generate a local solution around selected best (Equation (5)) |
14. end if |
15. Evaluate objective function |
16. if (rand < & f() < f()) |
17. |
18. f() = f() |
19. Increase (Equation (7)) |
20. Reduce (Equation (6)) |
21. end if |
22. if () |
23. Update the best solution |
24. end if |
25. end for |
26. Rank the bats and find the current best |
27. |
28. end while |
29. Return , postprocess results and visualization |
3. Numerical Simulation and Analysis
3.1. Parameters Setting
3.2. Standard Optimization Functions
3.3. Simulation Result Comparison and Analysis
3.4. Convergence Curve Analysis
4. LAFBA for Classical Engineering Problems
4.1. Tension/Compression Spring Design
Consider | |
Minimize | |
Subject to | |
Variable range | , , . |
4.2. Welded Beam Design
Consider | |
Minimize | |
Subject to | |
Variable range | |
where | |
E = 30 × 106 psi, G = 12 × 106 psi, | |
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Holland, J.H. Erratum: Genetic Algorithms and the Optimal Allocation of Trials. Siam J. Comput. 1974, 3, 326. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. IEEE Int. Conf. Neural Netw. 1995, 2002, 1942–1948. [Google Scholar]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science; IEEE Press: Piscataway, NJ, USA, 1995; pp. 39–43. [Google Scholar]
- Dorigo, M.; Colorni, V.A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cyber. Part B Cyber. 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization. TR-06; Erciyes University: Kayseri, Turkey, 2005. [Google Scholar]
- Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo Search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Yang, X.S.; Deb, S. Engineering Optimisation by Cuckoo Search. Int. J. Math. Modell. Numer. Optim. 2010, 1, 330–343. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms. Math. Comput. Simul. 2017, 141, 96–109. [Google Scholar] [CrossRef]
- Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. Comput. Knowl. Technol. 2010, 284, 65–74. [Google Scholar]
- Ramli, M.R.; Abas, Z.A.; Desa, M.I.; Abidin, Z.Z.; Alazzam, M.B. Enhanced Convergence of Bat Algorithm Based on Dimensional and Inertia Weight Factor. J. King Saud Univ.-Comput. Inf. Sci. 2018. [Google Scholar] [CrossRef]
- Banati, H.; Chaudhary, R. Multi-Modal Bat Algorithm with Improved Search (MMBAIS). J. Comput. Sci. 2017, 23, 130–144. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Awadallah, M.A.; Faris, H.; Yang, X.S.; Khader, A.T.; Alomari, O.A. Bat-inspired Algorithms with Natural Selection mechanisms for Global optimization. Neurocomputing 2018, 273, 448–465. [Google Scholar] [CrossRef]
- Li, Y.; Pei, Y.H.; Liu, J.S. Bat optimization algorithm combining uniform variation and Gaussian variation. Control Decis. 2017, 32, 1775–1781. [Google Scholar]
- Chakri, A.; Khelif, R.; Benouaret, M.; Yang, X.S. New directional bat algorithm for continuous optimization problems. Expert Syst. Appl. 2017, 69, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Al-Betar, M.A.; Awadallah, M.A. Island Bat Algorithm for Optimization. Expert Syst. Appl. 2018, 107, 126–145. [Google Scholar] [CrossRef]
- Laudis, L.L.; Shyam, S.; Jemila, C.; Suresh, V. MOBA: Multi Objective Bat Algorithm for Combinatorial Optimization in VLSI. Proc. Comput. Sci. 2018, 125, 840–846. [Google Scholar] [CrossRef]
- Tawhid, M.A.; Dsouza, K.B. Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm for solving feature selection problems. Appl. Comput. Inf. 2018. [Google Scholar] [CrossRef]
- Osaba, E.; Yang, X.S.; Diaz, F.; Lopez-Garcia, P.; Carballedo, R. An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Eng. Appl. Artif. Intell. 2016, 48, 59–71. [Google Scholar] [CrossRef]
- Mohamed, T.M.; Moftah, H.M. Simultaneous Ranking and Selection of Keystroke Dynamics Features Through A Novel Multi-Objective Binary Bat Algorithm. Future Comput. Inf. J. 2018, 3, 29–40. [Google Scholar] [CrossRef]
- Hamidzadeh, J.; Sadeghi, R.; Namaei, N. Weighted Support Vector Data Description based on Chaotic Bat Algorithm. Appl. Soft Comput. 2017, 60, 540–551. [Google Scholar] [CrossRef]
- Qi, Y.H.; Cai, Y.G.; Cai, H. Discrete Bat Algorithm for Vehicle Routing Problem with Time Window. Chin. J. Electron. 2018, 46, 672–679. [Google Scholar]
- Bekdaş, G.; Nigdeli, S.M.; Yang, X.S. A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Eng. Struct. 2018, 159, 89–98. [Google Scholar] [CrossRef]
- Ameur, M.S.B.; Sakly, A. FPGA based hardware implementation of Bat Algorithm. Appl. Soft Comput. 2017, 58, 378–387. [Google Scholar] [CrossRef]
- Chaib, L.; Choucha, A.; Arif, S. Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm. Ain Shams Eng. J. 2017, 8, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, E.; Sayed-Farhad, M.; Hojat, K. Bat algorithm for dam–reservoir operation. Environ. Earth Sci. 2018, 77, 510. [Google Scholar]
- Liu, J.S.; Ji, H.Y.; Li, Y. Robot Path Planning Based on Improved Bat Algorithm and Cubic Spline Interpolation. Acta Autom. Sin. 2019. [Google Scholar]
- Shi, Y.; Eberhart, R. Modified particle swarm optimizer. Proc. IEEE ICEC Conf. Anchorage 1999, 69–73. [Google Scholar]
- Du, Y.H. Advanced Mathematics; Beijing Jiaotong University Press: Beijing, China, 2014. [Google Scholar]
- Ball, F.; Bao, Y.N. Predict Society; Contemporary China Publishing House: Beijing, China, 2007. [Google Scholar]
- Yang, X.S.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective optimization. Eng. Optim. 2014, 46, 1222–1237. [Google Scholar] [CrossRef]
- Jamil, M.; Yang, X.S. A Literature Survey of Benchmark Functions for Global Optimization Problems. Mathematics 2013, 4, 150–194. [Google Scholar]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 Special Session on Real Parameter Optimization. J. Heuristics 2009, 15, 617–644. [Google Scholar]
- Zhao, Z.Y. Introduction to optimum design. Probabilistic Eng. Mech. 1990, 5, 100. [Google Scholar]
- Belegundu, A.D.; Arora, J.S. A study of mathematical programming methods for structural optimization. Part I: Theory. Int. J. Numer. Methods Eng. 2010, 21, 1601–1623. [Google Scholar] [CrossRef]
- Kaveh, A.; Talatahari, S. An improved ant colony optimization for constrained engineering design problems. Eng. Comput. 2010, 27, 155–182. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 2007, 20, 89–99. [Google Scholar] [CrossRef]
- Mezura-Montes, E.; Coello, C.A.C. An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen. Syst. 2008, 37, 443–473. [Google Scholar]
- Coello Coello, C.A. Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems. Comput. Ind. 2000, 41, 113–127. [Google Scholar] [CrossRef]
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Li, L.J.; Huang, Z.B.; Liu, F.; Wu, Q.H. A heuristic particle swarm optimizer for optimization of pin connected structures. Comput. Struct. 2007, 85, 340–349. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Krohling, R.A.; Coelho, L.D.S. Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems. IEEE Trans. Cyber. 2007, 36, 1407–1416. [Google Scholar] [CrossRef]
- Coello, C.; Carlos, A. constraint-handling using an evolutionary multi objective optimization technique. Civ. Eng. Environ. Syst. 2000, 17, 319–346. [Google Scholar] [CrossRef]
- Deb, K. Optimal design of a welded beam via genetic algorithms. AIAA J. 1991, 29, 2013–2015. [Google Scholar]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [Google Scholar] [CrossRef]
- MartÍ, V.; Robledo, L.M. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar]
- Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Ragsdell, K.M.; Phillips, D.T. Optimal Design of a Class of Welded Structures Using Geometric Programming. J. Eng. Ind. 1976, 98, 1021–1025. [Google Scholar] [CrossRef]
Algorithm | Function | Best | Worst | Average | SD | Function | Best | Worst | Average | SD |
---|---|---|---|---|---|---|---|---|---|---|
LAFBA | F1 | 0 | 0 | 0 | 0 | F6 | 0 | 7.89 × 10−16 | 1.05 × 10−16 | 1.98 × 10−16 |
BA | 1.27 × 101 | 1.46 × 102 | 7.99 × 101 | 3.52 × 101 | 7.48 × 10−2 | 8.76 × 101 | 3.03 × 101 | 2.63 × 101 | ||
PSO | 2.17 × 10−1 | 2.45 | 9.51 × 10−1 | 4.52 × 10−1 | 5.19 × 10−6 | 6.80 × 10−3 | 8.89 × 10−4 | 1.54 × 10−3 | ||
MFO | 7.92 × 10−11 | 7.58 × 10−1 | 1.51 × 10−1 | 1.44 × 10−1 | 9.89 × 10−17 | 1.48 × 10−13 | 1.10 × 10−14 | 2.82 × 10−14 | ||
SCA | 1.34 × 10−14 | 8.98 × 10−1 | 1.56 × 10−1 | 2.16 × 10−1 | 4.64 × 10−18 | 1.69 × 10−10 | 7.33 × 10−12 | 3.16 × 10−11 | ||
BOA | 3.11 × 10−14 | 1.45 × 10−12 | 2.95 × 10−13 | 3.26 × 10−13 | 5.84 × 10−12 | 1.03 × 10−11 | 8.24 × 10−12 | 1.16 × 10−12 | ||
LAFBA | F2 | 0 | 3.08 × 10−31 | 1.63 × 10−32 | 5.77 × 10−32 | F7 | 0 | 1.53 × 10−15 | 1.67 × 10−16 | 3.98 × 10−16 |
BA | 6.74 × 10−14 | 7.29 × 10−13 | 2.85 × 10−13 | 1.51 × 10−13 | 4.63 × 10−6 | 4.76 × 101 | 7.93 | 9.83 | ||
PSO | 2.62 × 10−11 | 8.69 × 10−7 | 7.48 × 10−8 | 1.91 × 10−7 | 5.19 × 10−6 | 6.80 × 10−3 | 8.89 × 10−4 | 1.54 × 10−3 | ||
MFO | 2.11 × 10−29 | 3.17 × 10−21 | 1.11 × 10−22 | 5.78 × 10−22 | 1.17 × 10−16 | 5.02 × 10−13 | 5.50 × 10−14 | 1.16 × 10−13 | ||
SCA | 1.15 × 10−30 | 7.54 × 10−20 | 3.46 × 10−21 | 1.42 × 10−20 | 9.03 × 10−18 | 4.87 × 10−12 | 3.70 × 10−13 | 9.31 × 10−13 | ||
BOA | 4.12 × 10−15 | 1.17 × 10−14 | 7.28 × 10−15 | 1.84 × 10−15 | 6.40 × 10−12 | 1.26 × 10−11 | 9.46 × 10−12 | 1.46 × 10−12 | ||
LAFBA | F3 | 0 | 2.74 × 10−8 | 7.01 × 10−9 | 8.65 × 10−9 | F8 | 0 | 3.26 × 10−15 | 4.89 × 10−16 | 9.14 × 10−16 |
BA | 1.21 × 101 | 1.94 × 101 | 1.74 × 101 | 1.51 | 1.31 | 8.01 × 101 | 2.58 × 101 | 1.92 × 101 | ||
PSO | 2.94 × 10−3 | 1.17 | 3.73 × 10−1 | 5.25 × 10−1 | 1.05 × 10−3 | 2.96 × 10−1 | 5.96 × 10−2 | 7.38 × 10−2 | ||
MFO | 2.99 × 10−8 | 5.09 | 4.07 × 10−1 | 1.05 | 2.45 × 10−6 | 2.51 × 102 | 2.57 × 101 | 5.80 × 101 | ||
SCA | 7.17 × 10−10 | 1.69 × 10−4 | 7.00 × 10−6 | 3.07 × 10−5 | 1.81 × 10−9 | 9.82 × 10−3 | 9.40 × 10−4 | 2.48 × 10−3 | ||
BOA | 1.65 × 10−9 | 6.14 × 10−9 | 3.49 × 10−9 | 1.20 × 10−9 | 7.47 × 10−12 | 1.14 × 10−11 | 9.61 × 10−12 | 1.09 × 10−12 | ||
LAFBA | F4 | 0 | 9.59 × 10−14 | 1.50 × 10−14 | 2.48 × 10−14 | F9 | 0 | 1.23 × 10−8 | 2.51 × 10−9 | 4.09 × 10−9 |
BA | 1.79 × 101 | 8.76 × 101 | 4.78 × 101 | 1.95 × 101 | 1.65 | 5.08 | 3.46 | 9.33 | ||
PSO | 1.31 | 3.02 × 101 | 9.41 | 6.93 | 2.14 × 10−2 | 2.94 × 10−1 | 8.88 × 10−2 | 5.66 × 10−2 | ||
MFO | 5.97 | 6.28 × 101 | 2.70 × 101 | 1.39 × 101 | 9.20 × 10−2 | 4.80 | 1.37 | 1.16 | ||
SCA | 2.56 × 10−12 | 2.41 × 101 | 2.44 | 6.64 | 1.09 × 10−7 | 3.34 × 10−3 | 3.59 × 10−4 | 6.97 × 10−4 | ||
BOA | 4.26 × 10−14 | 5.67 × 101 | 3.10 × 101 | 2.18 × 101 | 3.77 × 10−9 | 5.34 × 10−9 | 4.50 × 10−9 | 4.30 × 10−10 | ||
LAFBA | F5 | 0 | 6.11 × 10−16 | 8.23 × 10−17 | 1.52 × 10−16 | F10 | 0 | 9.09 × 10−16 | 9.00 × 10−17 | 2.36 × 10−16 |
BA | 9.72 × 10−3 | 2.28 × 10−1 | 1.31 × 10−1 | 5.67 × 10−2 | 6.91 | 1.58 × 102 | 6.14 × 101 | 3.83 × 101 | ||
PSO | 9.72 × 10−3 | 7.82 × 10−2 | 2.67 × 10−2 | 1.68 × 10−2 | 7.82 × 10−4 | 9.71 × 10−2 | 2.89 × 10−2 | 3.03 × 10−2 | ||
MFO | 3.72 × 10−2 | 2.28 × 10−1 | 1.28 × 10−1 | 4.60 × 10−2 | 1.59 × 10−5 | 1.75 × 101 | 3.35 | 6.25 | ||
SCA | 9.72 × 10−3 | 3.72 × 10−2 | 1.06 × 10−2 | 5.02 × 10−3 | 8.55 × 10−10 | 0.02047 | 9.25 × 10−4 | 0.003736 | ||
BOA | 3.72 × 10−2 | 8.08 × 10−2 | 7.18 × 10−2 | 1.47 × 10−2 | 5.97 × 10−12 | 1.11 × 10−11 | 9.02 × 10−12 | 1.38 × 10−12 |
Algorithm | Function | Best | Worst | Average | SD | Function | Best | Worst | Average | SD |
---|---|---|---|---|---|---|---|---|---|---|
LAFBA | F1 | 0 | 1.33 × 10−15 | 1.42 × 10−16 | 3.01 × 10−16 | F6 | 0 | 1.50 × 10−14 | 3.34 × 10−15 | 4.40 × 10−15 |
BA | 9.85 × 101 | 5.36 × 102 | 3.23 × 102 | 1.08 × 102 | 1.85 | 3.35 × 102 | 1.86 × 102 | 8.73 × 101 | ||
PSO | 5.80 × 10−2 | 3.46 × 10−1 | 1.66 × 10−1 | 7.21 × 10−2 | 1.49 × 10−1 | 9.03 × 10−1 | 3.74 × 10−1 | 1.56 × 10−1 | ||
MFO | 9.48 × 10−1 | 2.71 × 102 | 2.22 × 101 | 6.11 × 101 | 6.42 × 10−3 | 2.62 × 101 | 3.55 | 9.05 | ||
SCA | 5.39 × 10−1 | 7.04 | 1.49 | 1.21 | 8.99 × 10−5 | 1.55 | 9.02 × 10−2 | 2.81 × 10−1 | ||
BOA | 7.17 × 10−13 | 1.73 × 10−11 | 6.82 × 10−12 | 4.58 × 10−12 | 9.88 × 10−12 | 1.20 × 10−11 | 1.10 × 10−11 | 5.75 × 10−13 | ||
LAFBA | F2 | 0 | 1.14 × 10−28 | 6.72 × 10−30 | 2.13 × 10−29 | F7 | 0 | 1.75 × 10−13 | 3.06 × 10−14 | 5.03 × 10−14 |
BA | 2.18 × 10−11 | 6.16 × 10−8 | 2.18 × 10−9 | 1.14 × 10−8 | 4.00 × 101 | 1.31 × 103 | 5.37 × 102 | 2.94 × 102 | ||
PSO | 4.78 × 10−4 | 2.69 | 1.16 × 10−1 | 4.96 × 10−1 | 2.22 | 3.37 × 101 | 8.28 | 8.07 | ||
MFO | 3.59 × 10−6 | 2.86 × 10−3 | 2.43 × 10−4 | 5.34 × 10−4 | 3.87 × 10−2 | 7.87 × 102 | 2.01 × 102 | 2.24 × 102 | ||
SCA | 5.29 × 10−7 | 2.01 × 10−1 | 1.03 × 10−2 | 3.66 × 10−2 | 1.44 × 10−3 | 6.09 | 4.90 × 10−1 | 1.12 | ||
BOA | 8.92 × 10−15 | 1.56 × 10−14 | 1.15 × 10−14 | 1.35 × 10−15 | 1.10 × 10−11 | 1.37 × 10−11 | 1.23 × 10−11 | 7.91 × 10−13 | ||
LAFBA | F3 | 0 | 1.04 × 10−7 | 2.42 × 10−8 | 3.32 × 10−8 | F8 | 0 | 3.70 × 10−14 | 7.39 × 10−15 | 1.15 × 10−14 |
BA | 1.36 × 101 | 1.90 × 101 | 1.75 × 101 | 1.15 | 1.21 × 101 | 2.27 × 103 | 2.42 × 102 | 4.05 × 102 | ||
PSO | 1.52 | 4.28 | 2.90 | 5.77 × 10−1 | 5.01 × 101 | 4.20 × 102 | 1.65 × 102 | 8.14 × 101 | ||
MFO | 1.25 | 1.98 × 101 | 1.51 × 101 | 5.34 | 2.06 × 102 | 9.81 × 102 | 5.09 × 102 | 1.97 × 102 | ||
SCA | 3.78 × 10−2 | 2.03 × 101 | 7.69 | 8.97 | 4.31 × 101 | 2.05 × 102 | 1.26 × 102 | 4.20 × 101 | ||
BOA | 5.53 × 10−9 | 7.04 × 10−9 | 6.24 × 10−9 | 3.84 × 10−10 | 8.71 × 10−12 | 1.18 × 10−11 | 1.05 × 10−11 | 7.86 × 10−13 | ||
LAFBA | F4 | 0 | 2.49 × 10−12 | 2.57 × 10−13 | 6.51 × 10−13 | F9 | 0 | 6.42 × 10−8 | 1.62 × 10−8 | 2.38 × 10−8 |
BA | 5.97 × 101 | 2.77 × 102 | 1.43 × 102 | 5.73 × 101 | 3.80 | 8.41 | 6.17 | 1.05 | ||
PSO | 6.26E × 101 | 1.39 × 102 | 9.11 × 101 | 2.09 × 101 | 4.02 × 10−1 | 1.49 | 7.33 × 10−1 | 2.34 × 10−1 | ||
MFO | 1.24 × 102 | 2.84 × 102 | 1.75 × 102 | 3.39 × 101 | 5.80 | 8.48 | 7.31 | 6.34 × 10−1 | ||
SCA | 1.476745263 | 1.48 × 102 | 4.68 × 101 | 3.24 × 101 | 1.11 | 6.68 | 3.98 | 1.26 | ||
BOA | 0 | 2.19 × 102 | 3.93 × 101 | 8.01 × 101 | 4.30 × 10−9 | 5.59 × 10−9 | 5.13 × 10−9 | 2.75 × 10−10 | ||
LAFBA | F5 | 0 | 1.64 × 10−14 | 2.62 × 10−15 | 4.82 × 10−15 | F10 | 0 | 6.76 × 10−14 | 1.10 × 10−14 | 1.82 × 10−14 |
BA | 1.78 × 10−1 | 3.73 × 10−1 | 3.06 × 10−1 | 6.35 × 10−2 | 1.57 × 102 | 2.68 × 103 | 7.54 × 102 | 4.79 × 102 | ||
PSO | 3.72 × 10−2 | 2.28 × 10−1 | 9.21 × 10−2 | 3.74 × 10−2 | 3.53 | 3.39 × 101 | 1.32 × 101 | 7.06 | ||
MFO | 3.12 × 10−1 | 3.73 × 10−1 | 3.42 × 10−1 | 1.72 × 10−2 | 7.39 | 1.65 × 102 | 6.46 × 101 | 3.86 × 101 | ||
SCA | 3.72 × 10−2 | 1.27 × 10−1 | 4.87 × 10−2 | 2.21 × 10−2 | 3.02 | 7.53 × 101 | 3.54 × 101 | 1.91 × 101 | ||
BOA | 7.85 × 10−2 | 1.27 × 10−1 | 1.17 × 10−1 | 1.87 × 10−2 | 9.36 × 10−12 | 1.23 × 10−11 | 1.11 × 10−11 | 6.22 × 10−14 |
Algorithm | Function | Best | Worst | Average | SD | Function | Best | Worst | Average | SD |
---|---|---|---|---|---|---|---|---|---|---|
LAFBA | F1 | 0 | 1.67 × 10−15 | 2.87 × 10−16 | 5.31 × 10−16 | F6 | 0 | 1.81 × 10−13 | 5.31 × 10−14 | 6.00 × 10−14 |
BA | 5.33 × 102 | 2.05 × 103 | 1.31 × 103 | 3.86 × 102 | 4.33 × 102 | 2.06 × 103 | 1.15 × 103 | 4.26 × 102 | ||
PSO | 1.11 | 1.03 × 101 | 4.16 | 2.19 | 1.56 | 6.14 × 101 | 1.35 × 101 | 1.38 × 101 | ||
MFO | 4.57 × 102 | 1.03 × 103 | 6.68 × 102 | 1.29 × 102 | 1.27 × 102 | 2.41 × 102 | 1.90 × 102 | 3.25 × 101 | ||
SCA | 1.40 × 101 | 2.31 × 102 | 1.01 × 102 | 6.37 × 101 | 3.02 | 9.46 × 101 | 3.31 × 101 | 2.13 × 101 | ||
BOA | 4.79 × 10−12 | 1.99 × 10−11 | 1.29 × 10−11 | 4.35 × 10−12 | 1.09 × 10−11 | 1.34 × 10−11 | 1.19 × 10−11 | 5.62 × 10−13 | ||
LAFBA | F2 | 0 | 5.18 × 10−27 | 5.64 × 10−28 | 1.11 × 10−27 | F7 | 0 | 5.14 × 10−12 | 1.14 × 10−12 | 1.90 × 10−12 |
BA | 1.58 × 10−7 | 1.51 | 2.02 × 10−1 | 4.22 × 10−1 | 2.37 × 103 | 2.11 × 104 | 9.63 × 103 | 4.51 × 103 | ||
PSO | 1.28 | 1.31 × 101 | 4.69 | 2.88 | 2.12 × 102 | 4.43 × 103 | 6.72 × 102 | 9.23 × 102 | ||
MFO | 2.76 | 1.33 × 101 | 7.31 | 2.53 | 5.75 × 103 | 1.40 × 104 | 9.27 × 103 | 2.35 × 103 | ||
SCA | 1.61 | 9.52 | 4.29 | 1.89 | 2.39 × 102 | 3.80 × 103 | 1.17 × 103 | 7.31 × 102 | ||
BOA | 1.10 × 10−14 | 1.58 × 10−14 | 1.29 × 10−14 | 1.02 × 10−15 | 1.19 × 10−11 | 1.53 × 10−11 | 1.35 × 10−11 | 8.61 × 10−13 | ||
LAFBA | F3 | 0 | 1.53 × 10−7 | 3.86 × 10−8 | 5.92 × 10−8 | F8 | 0 | 1.57 × 10−12 | 1.68 × 10−13 | 3.74 × 10−13 |
BA | 1.51 × 101 | 1.92 × 101 | 1.78 × 101 | 8.52 × 10−1 | 3.44 × 102 | 1.74 × 103 | 8.28 × 102 | 2.86 × 102 | ||
PSO | 4.56 | 8.12 | 6.12 | 9.17 × 10−1 | 7.99 × 102 | 3.06 × 103 | 1.52 × 103 | 5.23 × 102 | ||
MFO | 1.93 × 101 | 1.99 × 101 | 1.97 × 101 | 1.62 × 10−1 | 2.39 × 103 | 5.00 × 103 | 3.99 × 103 | 6.68 × 102 | ||
SCA | 8.28 | 2.06 × 101 | 1.68 × 101 | 4.74 | 9.96 × 102 | 2.00 × 103 | 1.44 × 103 | 2.26 × 102 | ||
BOA | 5.14 × 10−9 | 6.81 × 10−9 | 5.85 × 10−9 | 3.48 × 10−10 | 8.18 × 10−12 | 1.19 × 10−11 | 1.04 × 10−11 | 8.34 × 10−13 | ||
LAFBA | F4 | 0 | 3.41 × 10−11 | 1.03 × 10−11 | 1.11 × 10−11 | F9 | 0 | 1.80 × 10−7 | 4.13 × 10−8 | 6.89 × 10−8 |
BA | 2.02 × 102 | 8.14 × 102 | 4.60 × 102 | 1.49 × 102 | 5.36 | 9.19 | 7.04 | 1.06 | ||
PSO | 4.28 × 102 | 7.24 × 102 | 5.65 × 102 | 6.46 × 101 | 1.19 | 2.84 | 1.77 | 4.13 × 10−1 | ||
MFO | 8.15E × 102 | 1.10 × 103 | 9.19 × 102 | 7.34 × 10−3 | 8.95 | 9.69 | 9.37 | 2.02 × 10−1 | ||
SCA | 3.24 × 101 | 6.68 × 102 | 2.59 × 102 | 1.43 × 102 | 8.50 | 9.47 | 9.15 | 2.18 × 10−1 | ||
BOA | 0 | 3.51 × 10−1 | 1.17 × 10−2 | 6.40 × 10−2 | 4.66 × 10−9 | 5.89 × 10−9 | 5.28 × 10−9 | 2.71 × 10−10 | ||
LAFBA | F5 | 0 | 2.66 × 10−13 | 5.69 × 10−14 | 7.18 × 10−14 | F10 | 0 | 1.96 × 10−12 | 5.81 × 10−13 | 7.43 × 10−13 |
BA | 3.73 × 10−1 | 4.72 × 10−1 | 4.44 × 10−1 | 2.52 × 10−2 | 2.47 × 103 | 1.37 × 104 | 6.31 × 103 | 2.72 × 103 | ||
PSO | 7.82 × 10−2 | 3.12 × 10−1 | 1.92 × 10−1 | 5.56 × 10−2 | 1.29 × 102 | 4.26 × 102 | 2.55 × 102 | 7.16 × 101 | ||
MFO | 4.60 × 10−1 | 4.76 × 10−1 | 4.70 × 10−1 | 3.45 × 10−3 | 4.13 × 102 | 9.28 × 102 | 6.59 × 102 | 1.39 × 102 | ||
SCA | 1.78 × 10−1 | 3.47 × 10−1 | 2.83 × 10−1 | 4.28 × 10−2 | 4.48 × 102 | 1.38 × 103 | 7.26 × 102 | 1.94 × 102 | ||
BOA | 1.27 × 10−1 | 1.54 × 10−1 | 1.30 × 10−1 | 5.35 × 10−3 | 9.76 × 10−12 | 1.43 × 10−11 | 1.21 × 10−11 | 1.06 × 10−12 |
F | LAFBA vs. BA | LAFBA vs. PSO | LAFBA vs. MFO | LAFBA vs. SCA | LAFBA vs. BOA | |||||
---|---|---|---|---|---|---|---|---|---|---|
p_Value | h | p_Value | h | p_Value | h | p_Value | h | p_Value | h | |
F1 | 9.78 × 10−12 | 1 | 9.78 × 10−12 | 1 | 9.78 × 10−12 | 1 | 9.78 × 10−12 | 1 | 9.78 × 10−12 | 1 |
F2 | 6.51 × 10−11 | 1 | 6.50 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.48 × 10−11 | 1 |
F3 | 3.71 × 10−11 | 1 | 3.71 × 10−11 | 1 | 3.71 × 10−11 | 1 | 3.71 × 10−11 | 1 | 0.111655 | 0 |
F4 | 1.24 × 10−11 | 1 | 1.24 × 10−11 | 1 | 1.24 × 10−11 | 1 | 1.24 × 10−11 | 1 | 1.14 × 10−06 | 1 |
F5 | 2.23 × 10−11 | 1 | 1.68 × 10−11 | 1 | 9.12 × 10−12 | 1 | 2.52 × 10−11 | 1 | 2.55 × 10−11 | 1 |
F6 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.45 × 10−11 | 1 |
F7 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.46 × 10−11 | 1 |
F8 | 6.50 × 10−11 | 1 | 6.50 × 10−11 | 1 | 6.50 × 10−11 | 1 | 6.50 × 10−11 | 1 | 6.46 × 10−11 | 1 |
F9 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 0.043201 | 1 |
F10 | 6.50 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.51 × 10−11 | 1 | 6.46 × 10−11 | 1 |
Algorithms | Optimal Values for Variables | Optimal Cost | ||
---|---|---|---|---|
d | D | N | ||
GSA [42] | 0.050276 | 0.323680 | 13.525410 | 0.0127022 |
PSO (Ha and Wang) [43] | 0.051728 | 0.357644 | 11.244543 | 0.0126747 |
ES (Coello and Montes) [44] | 0.051989 | 0.363965 | 10.890522 | 0.0126810 |
GA(Coello) [45] | 0.051480 | 0.351661 | 11.632201 | 0.0127048 |
Improved HS (Mmahdavi et al.) [46] | 0.051154 | 0.349871 | 12.076432 | 0.0126706 |
MFO [9] | 0.051994 | 0.364109 | 10.868422 | 0.0126669 |
WOA [47] | 0.051207 | 0.345215 | 12.004032 | 0.0126763 |
Montes and Coello [48] | 0.051643 | 0.355360 | 11.397926 | 0.0126980 |
Constraint correction (Arora) [41] | 0.050000 | 0.315900 | 14.250000 | 0.0128334 |
Mathematical optimization (Belegundu) [40] | 0.053396 | 0.399180 | 9.1854000 | 0.0127303 |
LAFBA | 0.051663 | 0.356074 | 11.333400 | 0.0126720 |
Algorithms | Optimal Values for Variables | Optimal Cost | |||
---|---|---|---|---|---|
h | l | t | b | ||
GWO [49] | 0.205676 | 3.478377 | 9.03681 | 0.205778 | 1.72624 |
GSA [42] | 0.182129 | 3.856979 | 10.0000 | 0.202376 | 1.87995 |
CPSO [50] | 0.202369 | 3.544214 | 9.048210 | 0.205723 | 1.72802 |
GA(Coello) [51] | N/A | N/A | N/A | N/A | 1.8245 |
GA(Deb) [52] | N/A | N/A | N/A | N/A | 2.3800 |
GA(Deb) [53] | 0.2489 | 6.1730 | 8.1789 | 0.2533 | 2.4331 |
HS (Lee and Geem) [54] | 0.2442 | 6.2331 | 8.2915 | 0.2443 | 2.3807 |
MVO [55] | 0.2054 | 3.47319 | 9.044502 | 0.20569 | 1.72645 |
GSA [56] | 0.2057 | 3.4704 | 9.0366 | 0.2057 | 1.7248 |
MFO [9] | 0.2057 | 3.4703 | 9.0364 | 0.2057 | 1.72452 |
WOA [47] | 0.205396 | 3.484293 | 9.037426 | 0.206276 | 1.730499 |
Random [57] | 0.4575 | 4.7313 | 5.0853 | 0.6600 | 4.1185 |
Simplex [57] | 0.2792 | 5.6256 | 7.7512 | 0.2796 | 2.5307 |
David [57] | 0.2434 | 6.2552 | 8.2915 | 0.2444 | 2.3841 |
Approx [57] | 0.2444 | 6.2189 | 8.2915 | 0.2444 | 2.3815 |
LAFBA | 0.184706185 | 3.642655691 | 9.134897358 | 0.205254053 | 1.7287 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, X.; Liu, J.; Ruan, X. An Improved Bat Algorithm Based on Lévy Flights and Adjustment Factors. Symmetry 2019, 11, 925. https://doi.org/10.3390/sym11070925
Li Y, Li X, Liu J, Ruan X. An Improved Bat Algorithm Based on Lévy Flights and Adjustment Factors. Symmetry. 2019; 11(7):925. https://doi.org/10.3390/sym11070925
Chicago/Turabian StyleLi, Yu, Xiaoting Li, Jingsen Liu, and Ximing Ruan. 2019. "An Improved Bat Algorithm Based on Lévy Flights and Adjustment Factors" Symmetry 11, no. 7: 925. https://doi.org/10.3390/sym11070925
APA StyleLi, Y., Li, X., Liu, J., & Ruan, X. (2019). An Improved Bat Algorithm Based on Lévy Flights and Adjustment Factors. Symmetry, 11(7), 925. https://doi.org/10.3390/sym11070925