# Global Embeddings of BTZ and Schwarzschild-ADS Type Black Holes in a Flat Space

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Embedding of Static Black Holes

## 3. Global Embedding of Static BTZ Spacetime

## 4. Global Embeddings of AdS Black Holes

#### 4.1. The Absence of 6-Dimensional Embeddings

#### 4.2. $d+3$ Dimensional Embedding of d-Dimensional Schwarzschild-AdS Black Hole

## 5. Concluding Remarks

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. Negative behavior of r.h.s. of (17) and (18)

## Appendix B. Non-Negativity of the Polynomial (25)

## References

- Heisler, M. No-hair theorems and black holes with hair. Helv. Phys. Acta
**1996**, 69, 501–528. [Google Scholar] [CrossRef] - Schwarzschild, K. On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berlin Math. Phys.
**1916**, arXiv:physics/9905030, 189–196. [Google Scholar] - Kottler, F. Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Ann. Phys.
**1918**, 361, 401–462. [Google Scholar] [CrossRef] - Reissner, H. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Ann. Phys.
**1916**, 355, 106–120. [Google Scholar] [CrossRef] - Tangherlini, F.R. Schwarzschild field in n dimensions and the dimensionality of space problem. Il Nuovo Cimento (1955–1965)
**1963**, 27, 636–651. [Google Scholar] [CrossRef] - Staruszkiewicz, A. Gravitation Theory in Three-Dimensional Space. Acta Phys. Pol.
**1963**, 24, 735–740. [Google Scholar] - Gott, J.R.; Simon, J.Z.; Alpert, M. General Relativity in a (2 + 1)-dimensional Space-time: An Electrically Charged Solution. Gen. Rel. Grav.
**1986**, 18, 1019–1035. [Google Scholar] [CrossRef] - Bañados, M.; Teitelboim, C.; Zanelli, J. Black hole in three-dimensional spacetime. Phys. Rev. Lett.
**1992**, 69, 1849–1851. [Google Scholar] [CrossRef] [Green Version] - Kasner, E. Finite Representation of the Solar Gravitational Field in Flat Space of Six Dimensions. Am. J. Math.
**1921**, 43, 130–133. [Google Scholar] [CrossRef] - Fronsdal, C. Completion and Embedding of the Schwarzschild Solution. Phys. Rev.
**1959**, 116, 778–781. [Google Scholar] [CrossRef] [Green Version] - Fujitani, T.; Ikeda, M.; Matsumoto, M. On the imbedding of the Schwarzschild space-time I. J. Math. Kyoto Univ.
**1961**, 1, 43–61. [Google Scholar] [CrossRef] - Davidson, A.; Paz, U. Extensible Black Hole Embeddings. Found. Phys.
**2000**, 30, 785–794. [Google Scholar] [CrossRef] - Paston, S.A.; Sheykin, A.A. Embeddings for Schwarzschild metric: classification and new results. Class. Quant. Grav.
**2012**, 29, 095022. [Google Scholar] [CrossRef] - Paston, S.A.; Sheykin, A.A. Embeddings for solutions of Einstein equations. Theor. Math. Phys.
**2013**, 175, 806–815. [Google Scholar] [CrossRef] [Green Version] - Paston, S.A.; Sheykin, A.A. Global embedding of the Reissner-Nordstrom metric in the flat ambient space. SIGMA
**2014**, 10, 003. [Google Scholar] [CrossRef] - Sheykin, A.A.; Paston, S.A. Classification of minimum global embeddings for nonrotating black holes. Theor. Math. Phys.
**2015**, 185, 1547–1556. [Google Scholar] [CrossRef] - Regge, T.; Teitelboim, C. General relativity à la string: A progress report. In Proceedings of the First Marcel Grossmann Meeting, Trieste, Italy, 7–12 July 1975; Ruffini, R., Ed.; pp. 77–88. [Google Scholar]
- Deser, S.; Pirani, F.A.E.; Robinson, D.C. New embedding model of general relativity. Phys. Rev. D
**1976**, 14, 3301–3303. [Google Scholar] [CrossRef] [Green Version] - Karasik, D.; Davidson, A. Geodetic Brane Gravity. Phys. Rev. D
**2003**, 67, 064012. [Google Scholar] [CrossRef] - Paston, S.A.; Franke, V.A. Canonical formulation of the embedded theory of gravity equivalent to Einstein’s general relativity. Theor. Math. Phys.
**2007**, 153, 1582–1596. [Google Scholar] [CrossRef] - Paston, S.A. Gravity as a field theory in flat space-time. Theor. Math. Phys.
**2011**, 169, 1611–1619. [Google Scholar] [CrossRef] [Green Version] - Faddeev, L.D. New dynamical variables in Einstein’s theory of gravity. Theor. Math. Phys.
**2011**, 166, 279–290. [Google Scholar] [CrossRef] - Paston, S.A.; Sheykin, A.A. Embedding theory as new geometrical mimetic gravity. Eur. Phys. J. C
**2018**, 78, 989. [Google Scholar] [CrossRef] - Paston, S.A.; Sheykin, A.A. From the Embedding Theory to General Relativity in a result of inflation. Int. J. Mod. Phys. D
**2012**, 21, 1250043. [Google Scholar] [CrossRef] - Sheykin, A.A.; Paston, S.A. The approach to gravity as a theory of embedded surface. AIP Conf. Proc.
**2014**, 1606, 400. [Google Scholar] [CrossRef] - Deser, S.; Levin, O. Mapping Hawking into Unruh thermal properties. Phys. Rev. D
**1999**, 59, 064004. [Google Scholar] [CrossRef] [Green Version] - Paston, S.A. When does the Hawking into Unruh mapping for global embeddings work? JHEP
**2014**, 6, 122. [Google Scholar] [CrossRef] - Friedman, A. Local isometric embedding of Riemannian manifolds with indefinite metric. J. Math. Mech.
**1961**, 10, 625. [Google Scholar] [CrossRef] - Dunajski, M.; Tod, P. Conformally isometric embeddings and Hawking temperature. arXiv
**2018**, arXiv:gr-qc/1812.05468. [Google Scholar] [CrossRef] - Giblin, J.T., Jr.; Marolf, D.; Garvey, R.H. Spacetime Embedding Diagrams for Spherically Symmetric Black Holes. Gen. Rel. Grav.
**2004**, 36, 83–99. [Google Scholar] [CrossRef] [Green Version] - Sheykin, A.A.; Grad, D.A.; Paston, S.A. Embeddings of the black holes in a flat space. In Proceedings of the XXI International Workshop High Energy Physics and Quantum Field Theory (QFTHEP 2013), Saint Petersburg Area, Russia, 23–30 June 2013. [Google Scholar] [CrossRef]
- Hong, S.T.; Kim, Y.W.; Park, Y.J. Local free-fall temperatures of charged BTZ black holes in massive gravity. Phys. Rev. D
**2019**, 99, 024047. [Google Scholar] [CrossRef] [Green Version] - Bañados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J. Geometry of the 2 + 1 black hole. Phys. Rev. D
**1993**, 48, 1506–1525. [Google Scholar] [CrossRef] - Willison, S. The Bañados, Teitelboim, and Zanelli spacetime as an algebraic embedding. J. Math. Phys.
**2011**, 52, 042503. [Google Scholar] [CrossRef] - Kuzeev, R.R. Imbedding of Kerr’s space-time. Gravitatsiya i Teoriya Otnositelnosti
**1981**, 18, 75. [Google Scholar] - Hong, S.T.; Kim, S.W. Hydrodynamics and global structure of rotating Schwarzschild black holes. J. Korean Phys. Soc.
**2006**, arXiv:gr-qc/050307949, S748–S754. [Google Scholar] - Paston, S.A. Hawking into Unruh mapping for embeddings of hyperbolic type. Class. Quant. Grav.
**2015**, 32, 145009. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sheykin, A.; Solovyev, D.; Paston, S.
Global Embeddings of BTZ and Schwarzschild-ADS Type Black Holes in a Flat Space. *Symmetry* **2019**, *11*, 841.
https://doi.org/10.3390/sym11070841

**AMA Style**

Sheykin A, Solovyev D, Paston S.
Global Embeddings of BTZ and Schwarzschild-ADS Type Black Holes in a Flat Space. *Symmetry*. 2019; 11(7):841.
https://doi.org/10.3390/sym11070841

**Chicago/Turabian Style**

Sheykin, Anton, Dmitry Solovyev, and Sergey Paston.
2019. "Global Embeddings of BTZ and Schwarzschild-ADS Type Black Holes in a Flat Space" *Symmetry* 11, no. 7: 841.
https://doi.org/10.3390/sym11070841