# Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

**Theorem**

**1.**

**Theorem**

**2.**

**Corollary**

**1.**

**Corollary**

**2.**

**Corollary**

**3.**

**Corollary**

**4.**

**Corollary**

**5.**

## 2. A Simple Lemma

**Lemma**

**1.**

**Proof.**

## 3. Proof of the Theorem

**Proof**

**of**

**Theorem**

**1.**

**Proof**

**of**

**Theorem**

**2.**

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Chen, L.; Zhang, W. Chebyshev polynomials and their some interesting applications. Adv. Differ. Equ.
**2017**, 2017, 303. [Google Scholar] - Wang, S. Some new identities of Chebyshev polynomials and their applications. Adv. Differ. Equ.
**2015**, 2015, 335. [Google Scholar] - Li, X. Some identities involving Chebyshev polynomials. Math. Probl. Eng.
**2015**, 2015, 950695. [Google Scholar] [CrossRef] - Ma, Y.; Lv, X. Several identities involving the reciprocal sums of Chebyshev polynomials. Math. Probl. Eng.
**2017**, 2017, 4194579. [Google Scholar] [CrossRef] - Cesarano, C. Identities and generating functions on Chebyshev polynomials. Georgian Math. J.
**2012**, 19, 427–440. [Google Scholar] [CrossRef] - Cesarano, C. Integral representations and new generating functions of Chebyshev polynomials. Hacet. J. Math. Stat.
**2015**, 44, 535–546. [Google Scholar] [CrossRef] - Lee, C.; Wong, K. On Chebyshev’s Polynomials and Certain Combinatorial Identities. Bull. Malays. Math. Sci. Soc.
**2011**, 34, 279–286. [Google Scholar] - Wang, T.; Zhang, H. Some identities involving the derivative of the first kind Chebyshev polynomials. Math. Probl. Eng.
**2015**, 2015, 146313. [Google Scholar] [CrossRef] - Wang, T.; Zhang, W. Two identities involving the integral of the first kind Chebyshev polynomials. Bull. Math. Soc. Sci. Math. Roum.
**2017**, 108, 91–98. [Google Scholar] - Zhang, W. Some identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q.
**2004**, 42, 149–154. [Google Scholar] - Ma, R.; Zhang, W. Several identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q.
**2007**, 45, 164–170. [Google Scholar] - Kim, T.; Kim, D.; Dolgy, D.; Park, J. Sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials. J. Inequal. Appl.
**2018**, 2018, 148. [Google Scholar] [CrossRef] [PubMed] - Kim, T.; Kim, D.; Kwon, J.; Dolgy, D. Expressing Sums of Finite Products of Chebyshev Polynomials of the Second Kind and of Fibonacci Polynomials by Several Orthogonal Polynomials. Mathematics
**2018**, 6, 210. [Google Scholar] [CrossRef] - Kim, T.; Kim, D.; Dolgy, D.; Kwon, J. Representing Sums of Finite Products of Chebyshev Polynomials of the First Kind and Lucas Polynomials by Chebyshev Polynomials. Mathematics
**2019**, 7, 26. [Google Scholar] [CrossRef] - Ma, Y.; Zhang, W. Some Identities Involving Fibonacci Polynomials and Fibonacci Numbers. Mathematics
**2018**, 6, 334. [Google Scholar] [CrossRef] - Zhang, Y.; Chen, Z. A New Identity Involving the Chebyshev Polynomials. Mathematics
**2018**, 6, 244. [Google Scholar] [CrossRef] - Shen, S.; Chen, L. Some Types of Identities Involving the Legendre Polynomials. Mathematics
**2019**, 7, 114. [Google Scholar] [CrossRef] - Kim, T.; Dolgy, D.; Kim, D.; Seo, J. Convolved Fibonacci Numbers and Their Applications. ARS Comb.
**2017**, 135, 119–131. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, Z.; Qi, L.
Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence. *Symmetry* **2019**, *11*, 788.
https://doi.org/10.3390/sym11060788

**AMA Style**

Chen Z, Qi L.
Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence. *Symmetry*. 2019; 11(6):788.
https://doi.org/10.3390/sym11060788

**Chicago/Turabian Style**

Chen, Zhuoyu, and Lan Qi.
2019. "Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence" *Symmetry* 11, no. 6: 788.
https://doi.org/10.3390/sym11060788