Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points
Abstract
1. Introduction
2. Sufficiency Criterion for the Family
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Yang, D.-G.; Xu, N.-E. Some subclasses of meromorphically multivalent functions associated with a linear operator. Appl. Math. Comput. 2008, 195, 11–23. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Jiang, Y.-P.; Srivastava, H.M. Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function. Comput. Math. Appl. 2009, 57, 571–586. [Google Scholar] [CrossRef][Green Version]
- Al-Amiri, H.; Mocanu, P.T. Some simple criteria of starlikeness and convexity for meromorphic functions. Mathematica (Cluj) 1995, 37, 11–21. [Google Scholar]
- Ali, R.M.; Ravichandran, V. Classes of meromorphic α-convex functions. Taiwanese J. Math. 2010, 14, 1479–1490. [Google Scholar] [CrossRef]
- Aouf, M.K.; Hossen, H.M. New criteria for meromorphic p-valent starlike functions. Tsukuba J. Math. 1993, 17, 481–486. [Google Scholar] [CrossRef]
- Arif, M. On certain sufficiency criteria for p-valent meromorphic spiralike functions. In Abstract and Applied Analysis; Hindawi: London, UK, 2012. [Google Scholar]
- Goyal, S.P.; Prajapat, J.K. A new class of meromorphic multivalent functions involving certain linear operator. Tamsui Oxf. J. Math. Sci. 2009, 25, 167–176. [Google Scholar]
- Joshi, S.B.; Srivastava, H.M. A certain family of meromorphically multivalent functions. Comput. Math. Appl. 1999, 38, 201–211. [Google Scholar] [CrossRef][Green Version]
- Liu, J.-L.; Srivastava, H.M. A linear operator and associated families of meromorphically multivalent functions. J. Math. Anal. Appl. 2001, 259, 566–581. [Google Scholar] [CrossRef]
- Raina, R.K.; Srivastava, H.M. A new class of mermorphically multivalent functions with applications of generalized hypergeometric functions. Math. Comput. Model. 2006, 43, 350–356. [Google Scholar] [CrossRef]
- Sun, Y.; Kuang, W.-P.; Wang, Z.-G. On meromorphic starlike functions of reciprocal order α. Bull. Malays. Math. Sci. Soc. 2012, 35, 469–477. [Google Scholar]
- Shi, L.; Wang, Z.-G.; Yi, J.-P. A new class of meromorphic functions associated with spirallike functions. J. Appl. Math. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Owa, S.; Darwish, H.E.; Aouf, M.A. Meromorphically multivalent functions with positive and fixed second coefficients. Math. Japon. 1997, 46, 231–236. [Google Scholar]
- Arif, M.; Ahmad, B. New subfamily of meromorphic starlike functions in circular domain involving q-differential operator. Math. Slovaca 2018, 68, 1049–1056. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Ahmad, B. A new subclass of meromorphic multivalent close-to-convex functions. Filomat 2016, 30, 2389–2395. [Google Scholar] [CrossRef]
- Arif, M.; Sokół, J.; Ayaz, M. Sufficient condition for functions to be in a class of meromorphic multivalent Sakaguchi type spiral-like functions. Acta Math. Sci. 2014, 34, 1–4. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, S.; Srivastava, G.; Srivastava, H.M.; Abujarad, E.S.A.; Arif, M.; Ghani, F. Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points. Symmetry 2019, 11, 764. https://doi.org/10.3390/sym11060764
Mahmood S, Srivastava G, Srivastava HM, Abujarad ESA, Arif M, Ghani F. Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points. Symmetry. 2019; 11(6):764. https://doi.org/10.3390/sym11060764
Chicago/Turabian StyleMahmood, Shahid, Gautam Srivastava, Hari Mohan Srivastava, Eman S.A. Abujarad, Muhammad Arif, and Fazal Ghani. 2019. "Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points" Symmetry 11, no. 6: 764. https://doi.org/10.3390/sym11060764
APA StyleMahmood, S., Srivastava, G., Srivastava, H. M., Abujarad, E. S. A., Arif, M., & Ghani, F. (2019). Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points. Symmetry, 11(6), 764. https://doi.org/10.3390/sym11060764