On Invariant Subspaces for the Shift Operator
Abstract
:1. Introduction and Preliminary
2. Main Results
3. Some Applications
4. Two Formulas of the Reproducing Function
5. Conclusions
Funding
Conflicts of Interest
References
- Abramovich, Y.A.; Aliprantis, C.D. An Invitation to Operator Theory; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Ambrozie, C.; Müller, V.M. Invariant subspaces for polynomially bounded operators. J. Funct. Anal. 2004, 213, 321–345. [Google Scholar] [CrossRef] [Green Version]
- Argyros, S.A.; Haydon, R.G. A hereditarily indecomposable ∞ -space that solves the scalar-plus-compact problem. Acta Math. 2011, 206, 1–54. [Google Scholar] [CrossRef]
- Aronszajn, N.; Smith, K.T. Invariant subspaces of completely continuous operators. Ann. Math. 1954, 60, 345–350. [Google Scholar] [CrossRef]
- Ball, J.A.; Bolotnikov, V. Weighted Bergman spaces: Shift-invariant subspaces and input/state/output linear systems. Integr. Equ. Oper. Theory 2013, 76, 301–356. [Google Scholar] [CrossRef]
- Beauzamy, B. Introduction to Operator Theory and Invariant Subspaces; North-Holland: New York, NY, USA, 1988. [Google Scholar]
- Bernstein, A.R.; Robinson, A. Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos. Pac. J. Math. 1966, 16, 421–431. [Google Scholar] [CrossRef]
- Beurling, A. On two problems concerning linear transformations in a Hilbert space. Acta Math. 1949, 81, 239–255. [Google Scholar] [CrossRef]
- Brown, S. Some invariant subspaces for subnormal operators. Integr. Equ. Oper. Theory 1978, 1, 310–333. [Google Scholar] [CrossRef]
- Brown, S. Hyponormal operators with thick spectra have invariant subspaces. Ann. Math. 1987, 125, 93–103. [Google Scholar] [CrossRef]
- Duren, P.L. Theorey of Hp Spacce; Academic Press: New York, NY, USA, 1970; Dover Publications Inc.: New York, NY, USA, 2000. [Google Scholar]
- Duren, P.L.; Schuster, A. Bergman Spaces, Math. Surveys Monographs; American Mathematical Society: Providence, RI, USA, 2004. [Google Scholar]
- Enflo, P. On the invariant subspace problem for Banach spaces. Acta Math. 1987, 158, 213–313. [Google Scholar] [CrossRef]
- Eschmeier, J.; Prunaru, B. Invariant subspaces for operators with Bishop’s property (β) and thick spectrum. J. Funt. Anal. 1990, 94, 196–222. [Google Scholar] [CrossRef]
- Eschmeier, J. Introduction to Banach Algebras, Operators, and Harmonic Analysis-Invariant Spaces; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Halmos, P.R. Invariant subspaces of polynomially compact operators. Pac. J. Math. 1966, 16, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Halmos, P.R. A Hilbert Space Problem Book, 2nd ed.; Springer-Verlag: New York, NY, USA, 1982. [Google Scholar]
- Hoffman, K. Banach Spaces of Analytic Functions; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1962; Dover Publications Inc.: New York, NY, USA, 1988. [Google Scholar]
- Karaev, M.T. On the proof of Beurling’s theorem on z-invariant subspaces. Expos. Math. 2007, 25, 265–267. [Google Scholar] [CrossRef]
- Karaev, M.T. On a Beurling-Arveson type theorem for some functional Hilbert spaces and related questions. Integr. Equ. Oper. Theory 2008, 62, 77–84. [Google Scholar] [CrossRef]
- Koosis, P. Introduction to Hp spaces; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Liu, J. On invariant subspaces for polynomially bounded operators. Czechoslov. Math. J. 2017, 67, 1–9. [Google Scholar] [CrossRef]
- Lomonosov, V. Invariant subspaces of the family of operators that commute with a completely continuous operator. Funct. Anal. Appl. 1973, 7, 213–214. [Google Scholar] [CrossRef]
- Martínez-Avendaño, R.A.; Rosenthal, P. An Introduction to Operators on the Hardy-Hilbert Space; Springer-Verlag: New York, NY, USA, 2007. [Google Scholar]
- Michaels, A.J. Hilden’s simple proof of Lomonosov’s invariant subspace theorem. Adv. Math. 1977, 25, 56–58. [Google Scholar] [CrossRef]
- Popov, A.I.; Tcaciuc, A. Every operator has almost-invariant subspaces. J. Funct. Anal. 2013, 265, 257–265. [Google Scholar] [CrossRef]
- Radjavi, H.; Rosenthal, P. On invariant subspaces and reflexive algebras. Am. J. Math. 1969, 91, 683–692. [Google Scholar] [CrossRef]
- Radjavi, H.; Rosenthal, P. Invariant Subspaces, 2nd ed.; Dover Publications Inc.: New York, NY, USA, 2003. [Google Scholar]
- Radjavi, H.; Troitsky, V.G. Invariant sublattices. Ill. J. Math. 2008, 52, 437–462. [Google Scholar] [CrossRef]
- Read, C.J. A solution to the invariant subspace problem. Bull. Lond. Math. Soc. 1984, 16, 337–401. [Google Scholar] [CrossRef]
- Read, C.J. A solution to the invariant subspace problem on the space l1. Bull. Lond. Math. Soc. 1985, 17, 305–317. [Google Scholar] [CrossRef]
- Read, C.J. A short proof concerning the invariant subspace problem. J. Lond. Math. Soc. 1986, 34, 335–348. [Google Scholar] [CrossRef]
- Read, C.J. Quasinilpotent operators and the invariant subspace problem. J. Lond. Math. Soc. 1997, 56, 595–606. [Google Scholar] [CrossRef]
- Rezaei, H. On operators with orbits dense relative to nontrivial subspaces. Funct. Anal. Its Appl. 2017, 51, 112–122. [Google Scholar] [CrossRef]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill Companies, Inc.: Columbus, OH, USA, 1987. [Google Scholar]
- Shimorin, S.M. Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew. Math. 2001, 531, 147–189. [Google Scholar] [CrossRef]
- Shimorin, S.M. On Beurling-type theorems in weighted l2 and Bergman Spaces. Proc. Am. Math. Soc. 2002, 131, 1777–1787. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J. On Invariant Subspaces for the Shift Operator. Symmetry 2019, 11, 743. https://doi.org/10.3390/sym11060743
Liu J. On Invariant Subspaces for the Shift Operator. Symmetry. 2019; 11(6):743. https://doi.org/10.3390/sym11060743
Chicago/Turabian StyleLiu, Junfeng. 2019. "On Invariant Subspaces for the Shift Operator" Symmetry 11, no. 6: 743. https://doi.org/10.3390/sym11060743
APA StyleLiu, J. (2019). On Invariant Subspaces for the Shift Operator. Symmetry, 11(6), 743. https://doi.org/10.3390/sym11060743