On Invariant Subspaces for the Shift Operator
Abstract
1. Introduction and Preliminary
2. Main Results
3. Some Applications
4. Two Formulas of the Reproducing Function
5. Conclusions
Funding
Conflicts of Interest
References
- Abramovich, Y.A.; Aliprantis, C.D. An Invitation to Operator Theory; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Ambrozie, C.; Müller, V.M. Invariant subspaces for polynomially bounded operators. J. Funct. Anal. 2004, 213, 321–345. [Google Scholar] [CrossRef]
- Argyros, S.A.; Haydon, R.G. A hereditarily indecomposable ∞ -space that solves the scalar-plus-compact problem. Acta Math. 2011, 206, 1–54. [Google Scholar] [CrossRef]
- Aronszajn, N.; Smith, K.T. Invariant subspaces of completely continuous operators. Ann. Math. 1954, 60, 345–350. [Google Scholar] [CrossRef]
- Ball, J.A.; Bolotnikov, V. Weighted Bergman spaces: Shift-invariant subspaces and input/state/output linear systems. Integr. Equ. Oper. Theory 2013, 76, 301–356. [Google Scholar] [CrossRef][Green Version]
- Beauzamy, B. Introduction to Operator Theory and Invariant Subspaces; North-Holland: New York, NY, USA, 1988. [Google Scholar]
- Bernstein, A.R.; Robinson, A. Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos. Pac. J. Math. 1966, 16, 421–431. [Google Scholar] [CrossRef]
- Beurling, A. On two problems concerning linear transformations in a Hilbert space. Acta Math. 1949, 81, 239–255. [Google Scholar] [CrossRef]
- Brown, S. Some invariant subspaces for subnormal operators. Integr. Equ. Oper. Theory 1978, 1, 310–333. [Google Scholar] [CrossRef]
- Brown, S. Hyponormal operators with thick spectra have invariant subspaces. Ann. Math. 1987, 125, 93–103. [Google Scholar] [CrossRef]
- Duren, P.L. Theorey of Hp Spacce; Academic Press: New York, NY, USA, 1970; Dover Publications Inc.: New York, NY, USA, 2000. [Google Scholar]
- Duren, P.L.; Schuster, A. Bergman Spaces, Math. Surveys Monographs; American Mathematical Society: Providence, RI, USA, 2004. [Google Scholar]
- Enflo, P. On the invariant subspace problem for Banach spaces. Acta Math. 1987, 158, 213–313. [Google Scholar] [CrossRef]
- Eschmeier, J.; Prunaru, B. Invariant subspaces for operators with Bishop’s property (β) and thick spectrum. J. Funt. Anal. 1990, 94, 196–222. [Google Scholar] [CrossRef]
- Eschmeier, J. Introduction to Banach Algebras, Operators, and Harmonic Analysis-Invariant Spaces; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Halmos, P.R. Invariant subspaces of polynomially compact operators. Pac. J. Math. 1966, 16, 433–437. [Google Scholar] [CrossRef]
- Halmos, P.R. A Hilbert Space Problem Book, 2nd ed.; Springer-Verlag: New York, NY, USA, 1982. [Google Scholar]
- Hoffman, K. Banach Spaces of Analytic Functions; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1962; Dover Publications Inc.: New York, NY, USA, 1988. [Google Scholar]
- Karaev, M.T. On the proof of Beurling’s theorem on z-invariant subspaces. Expos. Math. 2007, 25, 265–267. [Google Scholar] [CrossRef][Green Version]
- Karaev, M.T. On a Beurling-Arveson type theorem for some functional Hilbert spaces and related questions. Integr. Equ. Oper. Theory 2008, 62, 77–84. [Google Scholar] [CrossRef]
- Koosis, P. Introduction to Hp spaces; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Liu, J. On invariant subspaces for polynomially bounded operators. Czechoslov. Math. J. 2017, 67, 1–9. [Google Scholar] [CrossRef]
- Lomonosov, V. Invariant subspaces of the family of operators that commute with a completely continuous operator. Funct. Anal. Appl. 1973, 7, 213–214. [Google Scholar] [CrossRef]
- Martínez-Avendaño, R.A.; Rosenthal, P. An Introduction to Operators on the Hardy-Hilbert Space; Springer-Verlag: New York, NY, USA, 2007. [Google Scholar]
- Michaels, A.J. Hilden’s simple proof of Lomonosov’s invariant subspace theorem. Adv. Math. 1977, 25, 56–58. [Google Scholar] [CrossRef][Green Version]
- Popov, A.I.; Tcaciuc, A. Every operator has almost-invariant subspaces. J. Funct. Anal. 2013, 265, 257–265. [Google Scholar] [CrossRef]
- Radjavi, H.; Rosenthal, P. On invariant subspaces and reflexive algebras. Am. J. Math. 1969, 91, 683–692. [Google Scholar] [CrossRef]
- Radjavi, H.; Rosenthal, P. Invariant Subspaces, 2nd ed.; Dover Publications Inc.: New York, NY, USA, 2003. [Google Scholar]
- Radjavi, H.; Troitsky, V.G. Invariant sublattices. Ill. J. Math. 2008, 52, 437–462. [Google Scholar] [CrossRef]
- Read, C.J. A solution to the invariant subspace problem. Bull. Lond. Math. Soc. 1984, 16, 337–401. [Google Scholar] [CrossRef]
- Read, C.J. A solution to the invariant subspace problem on the space l1. Bull. Lond. Math. Soc. 1985, 17, 305–317. [Google Scholar] [CrossRef]
- Read, C.J. A short proof concerning the invariant subspace problem. J. Lond. Math. Soc. 1986, 34, 335–348. [Google Scholar] [CrossRef]
- Read, C.J. Quasinilpotent operators and the invariant subspace problem. J. Lond. Math. Soc. 1997, 56, 595–606. [Google Scholar] [CrossRef]
- Rezaei, H. On operators with orbits dense relative to nontrivial subspaces. Funct. Anal. Its Appl. 2017, 51, 112–122. [Google Scholar] [CrossRef]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill Companies, Inc.: Columbus, OH, USA, 1987. [Google Scholar]
- Shimorin, S.M. Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew. Math. 2001, 531, 147–189. [Google Scholar] [CrossRef]
- Shimorin, S.M. On Beurling-type theorems in weighted l2 and Bergman Spaces. Proc. Am. Math. Soc. 2002, 131, 1777–1787. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J. On Invariant Subspaces for the Shift Operator. Symmetry 2019, 11, 743. https://doi.org/10.3390/sym11060743
Liu J. On Invariant Subspaces for the Shift Operator. Symmetry. 2019; 11(6):743. https://doi.org/10.3390/sym11060743
Chicago/Turabian StyleLiu, Junfeng. 2019. "On Invariant Subspaces for the Shift Operator" Symmetry 11, no. 6: 743. https://doi.org/10.3390/sym11060743
APA StyleLiu, J. (2019). On Invariant Subspaces for the Shift Operator. Symmetry, 11(6), 743. https://doi.org/10.3390/sym11060743