Trajectory Prediction of Assembly Alignment of Columnar Precast Concrete Members with Deep Learning
Abstract
:1. Introduction
1.1. Assembly Technologies
1.2. Computer Vision
1.3. Modeling and Prediction Based on Deep Learning
2. Our Approach
2.1. Object Detection Network
2.2. Trajectory Prediction Network
3. Experiments
3.1. Dataset
3.2. Preprocessing
3.3. Training
- (1)
- Input the image sequence with target annotation into the object detection network, and supervised learning is used to train and output images with significant target frames.
- (2)
- After grouping and sorting the significant target image sequences, they are input into the trajectory prediction network for training and feature extraction. Calculate reward from the reward estimator with (3), which measures how close the prediction region to the ground-truth region. Generate cost map.
- (3)
- Obtain the motion directions through the direction estimator.
3.4. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Zheng, Y.; Ota, J.; Huang, Y. Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot. Sensors 2017, 17, 2004. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.L.; Song, H.C.; Song, J.B. Hole detection algorithm for chamferless square peg-in-hole based on shape recognition using F/T sensor. Int. J. Precis. Eng. Manuf. 2014, 15, 425–432. [Google Scholar] [CrossRef]
- Ðurović, P.; Grbić, R.; Cupec, R. Visual servoing for low-cost SCARA robots using an RGB-D camera as the only sensor. Automatika: Časopis za Automatiku, Mjerenje, Elektroniku, Računarstvo i Komunikacije 2018, 58, 495–505. [Google Scholar] [CrossRef]
- Wan, W.; Lu, F.; Wu, Z.; Harada, K. Teaching Robots to Do Object Assembly using Multi-modal 3D Vision. Neurocomputing 2017, 259, 85–93. [Google Scholar] [CrossRef]
- Teng, Z.; Xiao, J. Surface-Based Detection and 6-DoF Pose Estimation of 3-D Objects in Cluttered Scenes. IEEE Trans. Robot. 2016, 32, 1347–1361. [Google Scholar] [CrossRef]
- Kitani, K.; Ziebart, B.; Bagnell, J.; Hebert, M. Activity forecasting. In Proceedings of the Computer Vision–ECCV 2012, Florence, Italy, 7–13 October 2012. [Google Scholar]
- Xu, M.; Song, Y.; Wang, J.; Qiao, M.; Huo, L.; Wang, Z. Predicting Head Movement in Panoramic Video: A Deep Reinforcement Learning Approach. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 1. [Google Scholar] [CrossRef]
- Yoo, Y.; Yun, K.; Yun, S.; Hong, J.; Jeong, H.; Young Choi, J. Visual Path Prediction in Complex Scenes with Crowded Moving Objects. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2668–2677. [Google Scholar]
- CireşAn, D.; Meier, U.; Masci, J.; Schmidhuber, J. Multi-column Deep Neural Network for Traffic Sign Classification. Neural Netw. 2012, 32, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liang, X.; Chen, Y.; Shen, X.; Cheng, M.M.; Feng, J.; Zhao, Y.; Yan, S. STC: A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 2314–2320. [Google Scholar] [CrossRef]
- Hong, S.; Kwak, S.; Han, B. Weakly Supervised Learning with Deep Convolutional Neural Networks for Semantic Segmentation: Understanding Semantic Layout of Images with Minimum Human Supervision. IEEE Signal Process. Mag. 2017, 34, 39–49. [Google Scholar] [CrossRef]
- Wong, C.Y.; Liu, S.; Liu, S.C.; Rahman, M.A.; Lin, S.Ch.; Jiang, G.; Kwok, N.; Shi, H. Image contrast enhancement using histogram equalization with maximum intensity coverage. J. Mod. Opt. 2016, 63, 1618–1629. [Google Scholar] [CrossRef]
- Singh, K.; Vishwakarma, D.K.; Walia, G.S.; Kapoor, R. Contrast enhancement via texture region based histogram equalization. J. Mod. Opt. 2016, 63, 1440–1450. [Google Scholar] [CrossRef]
- Jazayeri, A.; Cai, H.; Zheng, J.Y.; Tuceryan, M. Vehicle Detection and Tracking in Car Video Based on Motion Model. IEEE Trans. Intell. Transp. Syst. 2011, 12, 583–595. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Leng, J.; Liu, Y. An enhanced SSD with feature fusion and visual reasoning for object detection. Neural Comput. Appl. 2018. [Google Scholar] [CrossRef]
- Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv 2017, arXiv:1701.06659. [Google Scholar]
- Dominguez-Sanchez, A.; Cazorla, M.; Orts-Escolano, S. Pedestrian Movement Direction Recognition Using Convolutional Neural Networks. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3504–3548. [Google Scholar] [CrossRef]
- Phan, N.; Dou, D.; Wang, H.; Kil, D.; Piniewski, B. Ontology-based Deep Learning for Human Behavior Prediction with Explanations in Health Social Networks. Inf. Sci. 2017, 384, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Zhang, Z.; Niu, S.; Sha, H.; Yang, R.; Yun, Y.; Lu, H. Deep-Learning-Based Drug-Target Interaction Prediction. J. Proteome Res. 2017, 16, 1401–1409. [Google Scholar] [CrossRef]
- Walker, J.; Gupta, A.; Hebert, M. Patch to the Future: Unsupervised Visual Prediction. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, M.; Schaeuble, M.; Nieto, J.; Siegwart, R.; Cadena, C. From Perception to Decision: A Data-driven Approach to End-to-end Motion Planning for Autonomous Ground Robots. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction With Big Data: A Deep Learning Approach. IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions Computer Vision and Pattern Recognition. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Lin, Y.; Dai, X.; Li, L.; Wang, F.Y. Pattern Sensitive Prediction of Traffic Flow Based on Generative Adversarial Framework. IEEE Trans. Intell. Transp. Syst. 2018, 1–6. [Google Scholar] [CrossRef]
- Kruthiventi, S.S.; Ayush, K.; Babu, R.V. DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations. IEEE Trans. Image Process. 2017, 26, 4446–4456. [Google Scholar] [CrossRef] [PubMed]
- Vondrick, C.; Khosla, A.; Malisiewicz, T.; Torralba, A. Visualizing Object Detection Features. Int. J. Comput. Vis. 2015, 119, 145–158. [Google Scholar] [CrossRef]
- Wang, W.; Shen, J.; Member, S. Video Salient Object Detection via Fully Convolutional Networks. IEEE Trans. Image Process. 2017, 27, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, X.; Zhang, Z.; He, Z.; Wu, F.; Liu, W.; Tang, J.; Zhuang, Y. Deep Learning Driven Visual Path Prediction from a Single Image. IEEE Trans. Image Process. 2016, 25, 5892–5904. [Google Scholar] [CrossRef] [PubMed]
Algorithm 1: Trajectory prediction |
Input: Scene image {I1, I2, …, It}, learning rate , and the ground-truth positions of the moving target Ic {(x1, y1), …, (xM, yM)}. Initialize global-shared parameters Initialize network gradients for t = 1 to M do Crop out the Ds positions according to scene images and moving target (xc,t, yc,t). for i = 1 to N do Extract prediction positions according to and the scene patches with an overlapped sliding window on it. -; end for Obtain the cost map according to Equations (6)–(8) Calculate the Hausdorff distance. Calculate Dr, direction distinguish. end |
Frames No. | 331# | 585# | 148# | 472# | 981# | 688# | MeanValue | |
---|---|---|---|---|---|---|---|---|
Moving Direction | +X | −Y | −X | −Y | +X | +Y | ||
Hausdorff distance | DRL | 29.13 | 16.75 | 27.48 | 28.18 | 14.27 | 21.42 | 22.87 |
VVP | 32.48 | 19.72 | 31.15 | 31.20 | 19.88 | 24.19 | 26.44 | |
Ours(w/o) | 24.54 | 15.53 | 26.83 | 29.47 | 15.57 | 20.61 | 22.09 | |
Ours | 12.28 | 10.15 | 11.57 | 13.09 | 10.55 | 11.62 | 11.54 |
Wind Speed (m/s) | 0 | 1.5 | 3.3 | 5.4 | |
---|---|---|---|---|---|
Number of tests | 500 | 500 | 500 | 500 | |
Success rate | DRL | 21.2% | 10.2% | 1.4% | 0.2% |
VVP | 18.6% | 5.8% | 0.4% | 0 | |
Visual servo | 53.6% | 21.2% | 15.8% | 8.6% | |
Ours | 62.0% | 37.6% | 20.8% | 12.4% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Tong, S.; Shi, H. Trajectory Prediction of Assembly Alignment of Columnar Precast Concrete Members with Deep Learning. Symmetry 2019, 11, 629. https://doi.org/10.3390/sym11050629
Zhang K, Tong S, Shi H. Trajectory Prediction of Assembly Alignment of Columnar Precast Concrete Members with Deep Learning. Symmetry. 2019; 11(5):629. https://doi.org/10.3390/sym11050629
Chicago/Turabian StyleZhang, Ke, Shenghao Tong, and Huaitao Shi. 2019. "Trajectory Prediction of Assembly Alignment of Columnar Precast Concrete Members with Deep Learning" Symmetry 11, no. 5: 629. https://doi.org/10.3390/sym11050629
APA StyleZhang, K., Tong, S., & Shi, H. (2019). Trajectory Prediction of Assembly Alignment of Columnar Precast Concrete Members with Deep Learning. Symmetry, 11(5), 629. https://doi.org/10.3390/sym11050629