E-Bayesian Estimation Based on Burr-X Generalized Type-II Hybrid Censored Data
Abstract
:1. Introduction
Burr-X as a Lifetime Model
2. Bayesian Estimation Method
2.1. Estimates under Squared Error Loss Function
2.2. Estimates under LINEX Loss Function
3. E-Bayesian Estimation Method
3.1. The E-Bayesian Estimate of
3.2. The E-Bayesian Estimate of
4. The MCMC Algorithm
- (1)
- Set the initial value of , say , to guarantee a rapid convergence of the Markov chain.
- (2)
- Set .
- (3)
- By applying a Metropolis–Hastings sampler, is simulated from
- Generate a proposal from a normal distribution as a proposal distribution ignoring negative draws, as they lead to a high rejection rate.
- A sample u is generated from the distribution.
- Compute the acceptance probability
- If accept as , or else, =
- (4)
- Also, is computed from Equation (3) as follows.
- (5)
- Set .
- (6)
- Steps (3–6) are repeated N times to get a sequence of the parameter with optional burn-in period.
- (7)
- The Bayesian estimates of and under SEL function are, respectively, given as
- (8)
- The Bayesian estimates for and by the LINEX loss function are, respectively, given by,
- (9)
- A , confidence intervals (CIs) for MLEs of and are obtained as follows:
- (10)
- A , CRIs of E-Bayesian and Bayesian estimates of and are constructed from the () and () quantiles sample of the empirical posterior PDF of MCMC draws, given by,
4.1. Simulation Study
- Choose values of
- For known values of a and b, the true value of is generated from gamma (a,b).
- A Metropolis–Hastings sampler is used for generating a Markov chain with 11,000 values of , ignoring the first 1000 values as a “burn-in” period of the Markov chain.
- Also, the Bayesian estimates of the parameter and the reliability function with the LINEX loss function are, respectively, computed from (28) and (Section 4.1).
- The 95% CIs of MLEs of and are constructed from (30).
- The 95% CRIs of E-Bayesian and Bayesian estimates of the parameter and the reliability function are computed from (31).
- The mean squared error (MSE) of and estimates are, respectively, given by,
5. Illustrative Example (Real Data Set)
- When and , we observe that , hence the experiment is terminated at random time , i.e., only 11 items fail at a random time .
- When and , we observe that , hence the experiment is finished at random time , i.e., 15 items fail at random time .
- When and , we observe that , hence the experiment is terminated at random time . Therefore, only 14 items fail out of 21 items at random time .
- When and , we observe that , hence the experiment is terminated at random time , i.e., 15 items are obtained out of 21 items at random time .
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Epstein, B. Truncated life tests in exponential case. Ann. Math. Stat. 1954, 25, 555–564. [Google Scholar] [CrossRef]
- Chandrasekar, B.; Childs, A.; Balakrishnan, N. Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring. Naval Res. Logist. 2004, 51, 994–1004. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kundu, D. Hybrid censoring models, inferential results and applications. Comput. Stat. Data Anal. 2013, 57, 166–209. [Google Scholar] [CrossRef]
- Shafay, A.R. Bayesian estimation and prediction based on generalized Type-II hybrid censored sample. J. Stat. Comput. Simul. 2015, 32, 641–661. [Google Scholar] [CrossRef]
- Mahmoud, M.A.W.; Ghazal, M.G.M. Estimations from the exponentiated rayleigh distribution based on generalized Type-II hybrid censored data. J. Egypt. Math. Soc. 2017, 25, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Burr, W.I. Cumulative frequency distribution. Ann. Math. Stat. 1942, 13, 215–232. [Google Scholar] [CrossRef]
- Pandiyan; Chandrabose, S.; Pukazhenthi; Subramanian. A stochastic model for aids patients using Burr Type X distribution. Int. J. Adv. Innov. Res. 2015, 4, 148–150. [Google Scholar]
- Ahmad, A.A.; El-Adll, M.E.; AlOafi, T.W. Estimation under Burr type X distribution based on doubly type II censored sample of dual generalized order statistics. J. Egypt. Math. Soc. 2015, 23, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Aludaat, K.M.; Alodat, M.T.; Alodat, T.T. Parameter estimation of Burr type X distribution for grouped data. Appl. Math. Sci. 2008, 2, 415–423. [Google Scholar]
- Mousa, M.A. Inferences and prediction for the Burr type X model based on records. J. Theor. Appl. Stat. 2007, 41, 415–425. [Google Scholar]
- Sindhu, T.N.; Aslam, M. On the parameter of Burr Type X under Bayesian principles. Int. J. Math. Comput. Sci. 2014, 8, 185–192. [Google Scholar]
- Rabie, A.; Li, J. E-Bayesian estimation for Burr-X distribution based on Type-I hybrid censoring scheme. IAENG Int. J. Appl. Math. 2018, 48, 244–250. [Google Scholar] [CrossRef]
- Zellner, A. Bayesian estimation and prediction using asymmetric loss functions. J. Am. Stat. Assoc. 1986, 18, 446–451. [Google Scholar] [CrossRef]
- Han, M. The structure of hierarchical prior distribution and its applications. Chin. Oper. Res. Manag. Sci. 1997, 6, 31–40. [Google Scholar]
- Han, M. E-Bayesian estimation and hierarchical Bayesian estimation of failure rate. Appl. Math. Model. 2009, 33, 1915–1922. [Google Scholar] [CrossRef]
- Jaheen, Z.F.; Okasha, H.M. E-Bayesian estimation for the Burr Type XII model based on Type II censoring. Appl. Math. Model. 2011, 35, 4730–4737. [Google Scholar] [CrossRef]
- Okasha, H.M. E-Bayesian estimation for the Lomax distribution on Type-II censored data. J. Egypt. Math. Soc. 2014, 22, 489–495. [Google Scholar] [CrossRef]
- Rabie, A.; Li, J. E-Bayesian estimation for the Burr-X distribution based on generalized Type I hybrid censoring scheme. Am. J. Math. Manag. Sci. 2019. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Cowles, M.K.; Carlin, B.P. Markov chain Monte Carlo diagnostics: A comparative review. J. Am. Stat. Assoc. 1995, 91, 883–904. [Google Scholar] [CrossRef]
- Bennett, H.S.; Filliben, J.J. A Systematic approach for multidimensional, closed-form analytic modeling: Minority electron mobilities in Ga1-xAlxAs hetero structures. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Tarvirdizade, B.; Gharehchobogh, H.K. Inference on Pr(X > Y) Based on Record Values from the Burr Type X Distribution. Hacet. J. Math. Stat. 2016, 45, 267–278. [Google Scholar] [CrossRef]
- Soliman, A.A. Comparison of linex and quadratic bayes estimators for the rayleigh distribution. Commun. Stat. Theory Methods 2000, 29, 95–107. [Google Scholar] [CrossRef]
Criteria | SEL Function | LINEX Loss | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 1.82415 | 1.81515 | 1.62638 | 1.42308 | 1.49423 | 1.72759 | 1.55551 | 1.36835 | 1.43408 | ||
MSE | 0.56645 | 0.39228 | 0.19571 | 0.06464 | 0.10101 | 0.28806 | 0.13755 | 0.04162 | 0.06726 | ||
Lower | 0.89686 | 1.1236 | 1.0148 | 0.8420 | 0.3892 | 0.5593 | 0.6968 | 0.2524 | 0.4161 | ||
Upper | 2.75144 | 2.5067 | 2.4404 | 2.4107 | 2.457 | 2.4291 | 2.4142 | 2.4843 | 2.452 | ||
Length | 1.85458 | 1.3831 | 1.4256 | 1.5687 | 2.0678 | 1.8698 | 1.7174 | 2.2318 | 2.0359 | ||
Mean | 1.88381 | 1.72198 | 1.54289 | 1.35003 | 1.41753 | 1.64524 | 1.48081 | 1.30211 | 1.36485 | ||
MSE | 0.49302 | 0.2907 | 0.13534 | 0.04071 | 0.06526 | 0.21197 | 0.09359 | 0.0268 | 0.04291 | ||
Lower | 1.41099 | 1.0782 | 0.9838 | 0.8095 | 0.3772 | 0.5395 | 0.682 | 0.2571 | 0.4137 | ||
Upper | 2.35663 | 2.3658 | 2.3067 | 2.2763 | 2.3229 | 2.2956 | 2.2796 | 2.3471 | 2.316 | ||
Length | 0.945648 | 1.2876 | 1.3229 | 1.4668 | 1.9457 | 1.7561 | 1.5975 | 2.09 | 1.9022 | ||
Mean | 1.81167 | 1.77186 | 1.58758 | 1.38913 | 1.45859 | 1.72116 | 1.5467 | 1.35768 | 1.42397 | ||
MSE | 0.56434 | 0.32622 | 0.15252 | 0.04193 | 0.07161 | 0.27055 | 0.12248 | 0.03116 | 0.0550 | ||
Lower | 0.855328 | 1.2527 | 1.1926 | 0.9552 | 0.4769 | 0.6545 | 0.8653 | 0.3941 | 0.5670 | ||
Upper | 2.76801 | 2.291 | 2.2498 | 2.220 | 2.3014 | 2.2627 | 2.2281 | 2.3213 | 2.2810 | ||
Length | 1.91268 | 1.0382 | 1.0572 | 1.2648 | 1.8245 | 1.6081 | 1.3628 | 1.9272 | 1.714 | ||
Mean | 1.76545 | 1.68398 | 1.50884 | 1.32024 | 1.38625 | 1.63871 | 1.47236 | 1.29218 | 1.35537 | ||
MSE | 0.39961 | 0.2318 | 0.0967 | 0.02021 | 0.03884 | 0.18977 | 0.07545 | 0.01435 | 0.02835 | ||
Lower | 1.10533 | 1.1955 | 1.1421 | 0.9117 | 0.4559 | 0.6251 | 0.8315 | 0.3820 | 0.5469 | ||
Upper | 2.42557 | 2.1725 | 2.1353 | 2.1060 | 2.1846 | 2.1474 | 2.1132 | 2.2024 | 2.1638 | ||
Length | 1.32023 | 0.9770 | 0.9931 | 1.1942 | 1.7286 | 1.5222 | 1.2817 | 1.8204 | 1.6168 | ||
Mean | 1.83636 | 1.65933 | 1.48676 | 1.30091 | 1.36596 | 1.62674 | 1.46051 | 1.28075 | 1.34376 | ||
MSE | 0.41976 | 0.2004 | 0.07709 | 0.01109 | 0.02631 | 0.17223 | 0.06335 | 0.00794 | 0.01999 | ||
Lower | 1.4239 | 1.2453 | 1.2077 | 0.952 | 0.4854 | 0.6573 | 0.8919 | 0.4310 | 0.5994 | ||
Upper | 2.24882 | 2.0734 | 2.0457 | 2.0215 | 2.1164 | 2.0746 | 2.0291 | 2.1305 | 2.0881 | ||
Length | 0.824922 | 0.8281 | 0.8380 | 1.0694 | 1.6310 | 1.4173 | 1.1373 | 1.6996 | 1.4888 | ||
Mean | 1.62609 | 1.59426 | 1.42846 | 1.2499 | 1.3124 | 1.56302 | 1.40329 | 1.23055 | 1.29109 | ||
MSE | 0.18972 | 0.15881 | 0.0585 | 0.01241 | 0.02124 | 0.13462 | 0.04734 | 0.01076 | 0.01674 | ||
Lower | 1.28096 | 1.190 | 1.1541 | 0.9097 | 0.4630 | 0.6277 | 0.8523 | 0.4109 | 0.5723 | ||
Upper | 1.97122 | 1.9985 | 1.9719 | 1.9473 | 2.0368 | 1.9971 | 1.9543 | 2.0502 | 2.0099 | ||
Length | 0.690261 | 0.8085 | 0.8178 | 1.0376 | 1.5738 | 1.3694 | 1.1019 | 1.6392 | 1.4375 | ||
Mean | 1.62173 | 1.64368 | 1.47274 | 1.28865 | 1.35308 | 1.61869 | 1.45263 | 1.27321 | 1.33607 | ||
MSE | 0.2717 | 0.18689 | 0.06981 | 0.00925 | 0.02272 | 0.16581 | 0.05966 | 0.00711 | 0.01818 | ||
Lower | 0.893912 | 1.2825 | 1.2542 | 0.9801 | 0.5046 | 0.6786 | 0.9324 | 0.4622 | 0.6332 | ||
Upper | 2.34955 | 2.0048 | 1.9832 | 1.9654 | 2.0727 | 2.0275 | 1.9729 | 2.0842 | 2.0389 | ||
Length | 1.45564 | 0.7223 | 0.7290 | 0.9853 | 1.5681 | 1.3489 | 1.0405 | 1.6220 | 1.4057 | ||
Mean | 1.53225 | 1.63107 | 1.46144 | 1.27876 | 1.34269 | 1.60709 | 1.44215 | 1.26396 | 1.3264 | ||
MSE | 0.1890 | 0.17092 | 0.05986 | 0.00465 | 0.01637 | 0.15162 | 0.05079 | 0.00305 | 0.01255 | ||
Lower | 0.869392 | 1.2779 | 1.2508 | 0.9763 | 0.5031 | 0.6762 | 0.9304 | 0.4624 | 0.6326 | ||
Upper | 2.19511 | 1.9843 | 1.9634 | 1.9465 | 2.0544 | 2.0092 | 1.9539 | 2.0655 | 2.0202 | ||
Length | 1.32572 | 0.7064 | 0.7126 | 0.9702 | 1.5513 | 1.3331 | 1.0235 | 1.6031 | 1.3876 |
Criteria | SEL Function | LINEX Loss | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.307776 | 0.30712 | 0.27518 | 0.24078 | 0.25282 | 0.30532 | 0.27373 | 0.23967 | 0.2516 | ||
MSE | 0.011812 | 0.00825 | 0.00359 | 0.00086 | 0.00154 | 0.00793 | 0.00342 | 0.00081 | 0.00146 | ||
Lower | 0.174502 | 0.2112 | 0.2094 | 0.1607 | 0.0792 | 0.1096 | 0.1577 | 0.0764 | 0.1066 | ||
Upper | 0.44105 | 0.4030 | 0.4013 | 0.3897 | 0.4023 | 0.3961 | 0.3898 | 0.4030 | 0.3966 | ||
Length | 0.266548 | 0.1917 | 0.1919 | 0.2290 | 0.3231 | 0.2865 | 0.2321 | 0.3266 | 0.2901 | ||
Mean | 0.318297 | 0.29404 | 0.26346 | 0.23052 | 0.24205 | 0.29241 | 0.26215 | 0.22952 | 0.24095 | ||
MSE | 0.010628 | 0.00623 | 0.0025 | 0.00059 | 0.00101 | 0.00598 | 0.00238 | 0.00056 | 0.00095 | ||
Lower | 0.252122 | 0.2031 | 0.2015 | 0.1546 | 0.0764 | 0.1055 | 0.1518 | 0.0738 | 0.1028 | ||
Upper | 0.384472 | 0.3849 | 0.3834 | 0.3724 | 0.3847 | 0.3786 | 0.3725 | 0.3853 | 0.3791 | ||
Length | 0.132349 | 0.1818 | 0.1819 | 0.2178 | 0.3083 | 0.2731 | 0.2206 | 0.3115 | 0.2764 | ||
Mean | 0.302633 | 0.30199 | 0.27058 | 0.23676 | 0.2486 | 0.30094 | 0.26974 | 0.23612 | 0.24789 | ||
MSE | 0.009276 | 0.0071 | 0.00287 | 0.00053 | 0.00109 | 0.00692 | 0.00278 | 0.00051 | 0.00105 | ||
Lower | 0.193104 | 0.2288 | 0.2278 | 0.1750 | 0.0895 | 0.1209 | 0.1731 | 0.0877 | 0.1191 | ||
Upper | 0.412162 | 0.3751 | 0.3741 | 0.3662 | 0.3841 | 0.3763 | 0.3664 | 0.3845 | 0.3767 | ||
Length | 0.219058 | 0.1463 | 0.1463 | 0.1912 | 0.2946 | 0.2554 | 0.1933 | 0.2968 | 0.2576 | ||
Mean | 0.300882 | 0.28955 | 0.25944 | 0.22701 | 0.23836 | 0.28859 | 0.25867 | 0.22642 | 0.23771 | ||
MSE | 0.008729 | 0.00514 | 0.0018 | 0.00025 | 0.00056 | 0.0050 | 0.00174 | 0.00024 | 0.23771 | ||
Lower | 0.203186 | 0.2194 | 0.2184 | 0.1678 | 0.0858 | 0.1159 | 0.1660 | 0.0842 | 0.1142 | ||
Upper | 0.398578 | 0.3597 | 0.3587 | 0.3511 | 0.3682 | 0.3608 | 0.3513 | 0.3687 | 0.3612 | ||
Length | 0.195393 | 0.1402 | 0.1403 | 0.1833 | 0.2825 | 0.2448 | 0.1853 | 0.2845 | 0.2469 | ||
Mean | 0.298925 | 0.28809 | 0.25813 | 0.22586 | 0.23715 | 0.28737 | 0.25755 | 0.22542 | 0.23667 | ||
MSE | 0.008271 | 0.00491 | 0.00168 | 0.00022 | 0.0005 | 0.00481 | 0.00164 | 0.00022 | 0.000479 | ||
Lower | 0.204471 | 0.2275 | 0.2268 | 0.1738 | 0.0897 | 0.1204 | 0.1724 | 0.0885 | 0.1191 | ||
Upper | 0.393379 | 0.3486 | 0.3479 | 0.3425 | 0.3620 | 0.3539 | 0.3427 | 0.3624 | 0.3543 | ||
Length | 0.188907 | 0.1211 | 0.1212 | 0.1687 | 0.2724 | 0.2335 | 0.1703 | 0.2739 | 0.2352 | ||
Mean | 0.29833 | 0.28406 | 0.25451 | 0.2227 | 0.23383 | 0.28336 | 0.25396 | 0.22227 | 0.23337 | ||
MSE | 0.007858 | 0.00436 | 0.00141 | 0.00019 | 0.00038 | 0.00427 | 0.00137 | 0.00019 | 0.00037 | ||
Lower | 0.211413 | 0.2245 | 0.2238 | 0.1715 | 0.0885 | 0.1188 | 0.1702 | 0.0873 | 0.1175 | ||
Upper | 0.385247 | 0.3436 | 0.3429 | 0.3376 | 0.3569 | 0.3489 | 0.3378 | 0.3572 | 0.3492 | ||
Length | 0.173834 | 0.1190 | 0.1191 | 0.1661 | 0.2684 | 0.2301 | 0.1676 | 0.2699 | 0.2316 | ||
Mean | 0.298976 | 0.28424 | 0.25468 | 0.22285 | 0.23399 | 0.28371 | 0.25425 | 0.22252 | 0.23363 | ||
MSE | 0.007187 | 0.00424 | 0.00131 | 0.0001 | 0.00029 | 0.00417 | 0.00128 | 0.0001 | 0.00028 | ||
Lower | 0.233718 | 0.2318 | 0.2313 | 0.1765 | 0.0916 | 0.1224 | 0.1755 | 0.0907 | 0.1214 | ||
Upper | 0.364234 | 0.3367 | 0.3362 | 0.3328 | 0.3541 | 0.3456 | 0.333 | 0.3544 | 0.3458 | ||
Length | 0.130516 | 0.1049 | 0.1049 | 0.1563 | 0.2625 | 0.2232 | 0.1576 | 0.2637 | 0.2244 | ||
Mean | 0.300122 | 0.2825 | 0.25312 | 0.22148 | 0.23256 | 0.28198 | 0.25271 | 0.22116 | 0.23221 | ||
MSE | 0.006783 | 0.00391 | 0.00111 | 0.00003 | 0.00018 | 0.00384 | 0.00108 | 0.00003 | 0.00017 | ||
Lower | 0.25815 | 0.2310 | 0.2305 | 0.1759 | 0.0913 | 0.1219 | 0.1748 | 0.0904 | 0.1210 | ||
Upper | 0.342094 | 0.3340 | 0.3335 | 0.3304 | 0.3517 | 0.3432 | 0.3306 | 0.3520 | 0.3434 | ||
Length | 0.0839436 | 0.1030 | 0.1030 | 0.1545 | 0.2604 | 0.2212 | 0.1557 | 0.2616 | 0.2225 |
Criteria | SEL Function | LINEX Loss | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2.71786 | 2.81461 | 2.52189 | 2.20665 | 2.31698 | 2.31698 | 2.32603 | 2.0548 | 2.1503 | ||
MSE | 0.7076 | 0.6636 | 0.27238 | 0.04271 | 0.10049 | 0.32886 | 0.10631 | 0.00301 | 0.0226 | ||
Lower | 1.66523 | 1.6376 | 1.3051 | 1.2125 | 0.5317 | 0.7883 | 0.8086 | 0.1566 | 0.3951 | ||
Upper | 3.77049 | 3.9916 | 3.8418 | 3.8313 | 3.8816 | 3.8456 | 3.8434 | 3.953 | 3.9055 | ||
Length | 2.10526 | 2.3541 | 2.5368 | 2.6188 | 3.3498 | 3.0573 | 3.0348 | 3.7964 | 3.5104 | ||
Mean | 2.83501 | 2.7219 | 2.43882 | 2.13397 | 2.24067 | 2.49547 | 2.25497 | 1.99146 | 2.08423 | ||
MSE | 0.70233 | 0.52121 | 0.19262 | 0.01799 | 0.05797 | 0.24558 | 0.06508 | 0.00013 | 0.00715 | ||
Lower | 2.68764 | 1.5827 | 1.2729 | 1.1717 | 0.5135 | 0.7616 | 0.7937 | 0.1618 | 0.3931 | ||
Upper | 2.98238 | 3.8611 | 3.7181 | 3.706 | 3.7544 | 3.7197 | 3.7162 | 3.8211 | 3.7753 | ||
Length | 0.294742 | 2.2784 | 2.4452 | 2.5343 | 3.2408 | 2.958 | 2.9226 | 3.6592 | 3.3822 |
Criteria | SEL Function | LINEX Loss | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.517062 | 0.52677 | 0.47198 | 0.41299 | 0.43363 | 0.52255 | 0.4686 | 0.41039 | 0.43078 | ||
MSE | 0.013175 | 0.01189 | 0.00294 | 0.00002 | 0.00025 | 0.01099 | 0.00259 | 0.00005 | 0.00017 | ||
Lower | 0.379033 | 0.3799 | 0.3755 | 0.2901 | 0.1460 | 0.1994 | 0.2827 | 0.1391 | 0.1921 | ||
Upper | 0.655091 | 0.6736 | 0.6696 | 0.6539 | 0.6800 | 0.6679 | 0.6545 | 0.6817 | 0.6694 | ||
Length | 0.276057 | 0.2936 | 0.2941 | 0.3638 | 0.5340 | 0.4685 | 0.3718 | 0.5425 | 0.4773 | ||
Mean | 0.535322 | 0.51515 | 0.46157 | 0.40387 | 0.42407 | 0.5110 | 0.45824 | 0.40133 | 0.42126 | ||
MSE | 0.013907 | 0.00949 | 0.00192 | 0.00019 | 0.00004 | 0.0087 | 0.00164 | 0.00027 | 0.000013 | ||
Lower | 0.517135 | 0.3695 | 0.3652 | 0.282 | 0.1416 | 0.1937 | 0.2748 | 0.1349 | 0.1866 | ||
Upper | 0.55350 | 0.6608 | 0.6568 | 0.6411 | 0.6661 | 0.6544 | 0.6417 | 0.6677 | 0.6559 | ||
Length | 0.0363737 | 0.2912 | 0.2917 | 0.3591 | 0.5245 | 0.4608 | 0.3668 | 0.5328 | 0.4693 |
Criteria | SEL Function | LINEX Loss | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2.30514 | 2.43127 | 2.17842 | 1.90612 | 2.00142 | 2.24881 | 2.03042 | 1.79153 | 1.87559 | ||
MSE | 0.31672 | 0.18603 | 0.03186 | 0.00884 | 0.00003 | 0.06194 | 0.00095 | 0.04348 | 0.0155 | ||
Lower | 1.32817 | 1.4141 | 1.1706 | 1.0469 | 0.4589 | 0.6806 | 0.7451 | 0.1769 | 0.3853 | ||
Upper | 3.28211 | 3.4485 | 3.3271 | 3.310 | 3.3533 | 3.3223 | 3.3157 | 3.4062 | 3.3659 | ||
Length | 1.95393 | 2.0344 | 2.1565 | 2.2631 | 2.8943 | 2.6417 | 2.5706 | 3.2292 | 2.9806 | ||
Mean | 2.25925 | 2.39822 | 2.1488 | 1.8802 | 1.97421 | 2.22801 | 2.00479 | 1.77471 | 1.85176 | ||
MSE | 0.18272 | 0.15868 | 0.02223 | 0.01442 | 0.00074 | 0.05203 | 0.0001 | 0.05078 | 0.02204 | ||
Lower | 1.55708 | 1.3943 | 1.1582 | 1.0322 | 0.4524 | 0.6714 | 0.7389 | 0.1748 | 0.3838 | ||
Upper | 2.96142 | 3.4021 | 3.2832 | 3.2654 | 3.308 | 3.2923 | 3.2707 | 3.3746 | 3.3197 | ||
Length | 1.40434 | 2.0078 | 2.1250 | 2.2332 | 2.8557 | 2.6209 | 2.5318 | 3.1998 | 2.936 |
Criteria | SEL Function | LINEX Loss | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.50136 | 0.47678 | 0.4272 | 0.3738 | 0.39249 | 0.47292 | 0.4241 | 0.37143 | 0.38987 | ||
MSE | 0.012054 | 0.00349 | 0.00009 | 0.00193 | 0.00064 | 0.00305 | 0.00004 | 0.00214 | 0.000776 | ||
Lower | 0.354413 | 0.3362 | 0.3322 | 0.2563 | 0.1278 | 0.1756 | 0.2497 | 0.1216 | 0.1690 | ||
Upper | 0.648307 | 0.6173 | 0.6137 | 0.5981 | 0.6198 | 0.6094 | 0.5985 | 0.6212 | 0.6107 | ||
Length | 0.293894 | 0.2811 | 0.2815 | 0.3418 | 0.4919 | 0.4338 | 0.3488 | 0.4996 | 0.4417 | ||
Mean | 0.455001 | 0.47222 | 0.42311 | 0.37022 | 0.38873 | 0.4684 | 0.42004 | 0.36787 | 0.38614 | ||
MSE | 0.003422 | 0.00297 | 0.00003 | 0.00226 | 0.00084 | 0.00257 | 0.00001 | 0.00249 | 0.00099 | ||
Lower | 0.36187 | 0.3324 | 0.3284 | 0.2533 | 0.1262 | 0.1735 | 0.2468 | 0.1201 | 0.1670 | ||
Upper | 0.548132 | 0.6121 | 0.6084 | 0.5929 | 0.6142 | 0.6040 | 0.5933 | 0.6156 | 0.6053 | ||
Length | 0.18626 | 0.2797 | 0.2801 | 0.3395 | 0.4880 | 0.4305 | 0.3465 | 0.4955 | 0.4383 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabie, A.; Li, J. E-Bayesian Estimation Based on Burr-X Generalized Type-II Hybrid Censored Data. Symmetry 2019, 11, 626. https://doi.org/10.3390/sym11050626
Rabie A, Li J. E-Bayesian Estimation Based on Burr-X Generalized Type-II Hybrid Censored Data. Symmetry. 2019; 11(5):626. https://doi.org/10.3390/sym11050626
Chicago/Turabian StyleRabie, Abdalla, and Junping Li. 2019. "E-Bayesian Estimation Based on Burr-X Generalized Type-II Hybrid Censored Data" Symmetry 11, no. 5: 626. https://doi.org/10.3390/sym11050626
APA StyleRabie, A., & Li, J. (2019). E-Bayesian Estimation Based on Burr-X Generalized Type-II Hybrid Censored Data. Symmetry, 11(5), 626. https://doi.org/10.3390/sym11050626