# Time-reversal Symmetry in Antenna Theory

## Abstract

**:**

## 1. Introduction

## 2. Time-Reversal Symmetry

#### 2.1. General Case

#### 2.2. Time-Harmonic Variation

## 3. Application to Antenna Theory

#### 3.1. Polarization and Impedance Matching

#### 3.2. Time-Reversed Field Generated with a Far-Field Illumination

## 4. Conclusions

## Funding

## Conflicts of Interest

## Appendix A

## References

- Feynman, R.; Leighton, R.; Sand, M. The Feynman Lectures on Physics; California Institute of Technology: Pasadena, CA, USA, 1963. [Google Scholar]
- Casimir, H.B.G. Reciprocity theorems and irreversible processes. Proc. IEEE
**1963**, 51, 1570. [Google Scholar] [CrossRef] - Potton, R.J. Reciprocity in optics. Rep. Prog. Phys.
**2004**, 67, 717–754. [Google Scholar] [CrossRef] - Caloz, C.; Alù, A.; Tretyakov, S.; Sounas, D.; Achouri, K.; Deck-Léger, Z.L. Electromagnetic Nonreciprocity. Phys. Rev. Appl.
**2018**, 10, 047001. [Google Scholar] [CrossRef] - Onsager, L. Reciprocal relations in irreversible processes I. Phys. Rev.
**1931**, 37, 405. [Google Scholar] - Silveirinha, M.G. Hidden Time-Reversal Symmetry in Dissipative Reciprocal Systems. Opt. Express
**2019**, in press. Available online: https://arxiv.org/abs/1903.02944 (accessed on 3 April 2019). - Silveirinha, M.G. Chern Invariants for Continuous Media. Phys. Rev. B
**2015**, 92, 125153. [Google Scholar] [CrossRef] - Silveirinha, M.G. Topological classification of Chern-type insulators by means of the photonic Green function. Phys. Rev. B
**2018**, 97, 115146. [Google Scholar] [CrossRef] [Green Version] - Silveirinha, M.G. Modal expansions in dispersive material systems with application to quantum optics and topological photonics. 2018. Available online: https://arxiv.org/abs/1712.04272 (accessed on 3 April 2019).
- Fernandes, D.E.; Silveirinha, M.G. Asymmetric Transmission and Isolation in Nonlinear Devices: Why They Are Different. IEEE Antennas Wirel. Propag. Lett.
**2018**, 17, 1953. [Google Scholar] [CrossRef] - Tanter, M.; Thomas, J.L.; Coulouvrat, F.; Fink, M. Breaking of time reversal invariance in nonlinear acoustics. Phys. Rev. E
**2001**, 64, 016602. [Google Scholar] [CrossRef] - Shadrivov, I.V.; Fedotov, V.A.; Powell, D.A.; Kivshar, Y.S.; Zheludev, N.I. Electromagnetic wave analogue of an electronic diode. New J. Phys.
**2011**, 13, 033025. [Google Scholar] - Mahmoud, A.M.; Davoyan, A.R.; Engheta, N. All-passive nonreciprocal metastructure. Nat. Commun.
**2015**, 6, 8359. [Google Scholar] [CrossRef] [Green Version] - Sounas, D.L.; Soric, J.; Alù, A. Broadband Passive Isolators Based on Coupled Nonlinear Resonances. Nat. Electron.
**2018**, 1, 113–119. [Google Scholar] [CrossRef] - Maslovski, S.; Tretyakov, S. Phase conjugation and perfect lensing. J. Appl. Phys.
**2003**, 94, 4241. [Google Scholar] [CrossRef] - Pendry, J.B. Time Reversal and Negative Refraction. Science
**2008**, 322, 71–73. [Google Scholar] [CrossRef] [PubMed] - Silveirinha, M.G. PTD symmetry protected scattering anomaly in optics. Phys. Rev. B
**2017**, 95, 035153. [Google Scholar] [CrossRef] - Balanis, C.A. Antenna Theory, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Cassereau, D.; Fink, M. Time-Reversal of Ultrasonic Fields-Part III: Theory of the Closed Time-Reversal Cavity. IEEE Trans. Ultrason. Ferroelectr. Freq.
**1992**, 39, 579–592. [Google Scholar] [CrossRef] [PubMed] - Fink, M. Time-Reversed Acoustics. Sci. Am.
**1999**, 281, 91–97. [Google Scholar] [CrossRef] - de Rosny, J.; Fink, M. Overcoming the Diffraction Limit in Wave Physics Using a Time-Reversal Mirror and a Novel Acoustic Sink. Phys. Rev. Lett.
**2002**, 89, 124301. [Google Scholar] [CrossRef] [PubMed] - Lerosey, G.; de Rosny, J.; Tourin, A.; Derode, A.; Montaldo, G.; Fink, M. Time Reversal of Electromagnetic Waves. Phys. Rev. Lett.
**2004**, 92, 193904. [Google Scholar] [CrossRef] - Lerosey, G.; de Rosny, J.; Tourin, A.; Fink, M. Focusing Beyond the Diffraction Limit with Far-Field Time Reversal. Science
**2007**, 315, 1120. [Google Scholar] [CrossRef] [PubMed] - de Rosny, J.; Lerosey, G.; Fink, M. Theory of Electromagnetic Time-Reversal Mirrors. IEEE Trans. Antennas Propag.
**2010**, 58, 3139–3149. [Google Scholar] [CrossRef] - Andersen, J.B.; Vaughan, R.G. Transmitting, receiving and scattering properties of antennas. IEEE Antennas Propag. Mag.
**2003**, 45, 93–98. [Google Scholar] [CrossRef] - Andersen, J.B.; Frandsen, A. Absorption Efficiency of Receiving Antennas. IEEE Trans. Antennas Propag.
**2005**, 53, 2843–2849. [Google Scholar] [CrossRef]

**Figure 1.**Illustration of the effect of the time-reversal operation in a time-domain scattering problem: (

**a**) The incoming waves ${E}_{1}^{+}$ and ${E}_{2}^{+}$ are scattered by the junction and originate two outgoing waves ${E}_{1}^{-}$ and ${E}_{2}^{-}$. (

**b**) Time-reversed scenario where the roles of the incoming and outgoing waves are exchanged.

**Figure 2.**(

**a**) An antenna fed by a time-harmonic generator radiates in free-space. (

**b**) Time-reversed problem wherein all the radiated energy returns to the antenna. The antenna terminals are connected to a matched load.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Silveirinha, M.G.
Time-reversal Symmetry in Antenna Theory. *Symmetry* **2019**, *11*, 486.
https://doi.org/10.3390/sym11040486

**AMA Style**

Silveirinha MG.
Time-reversal Symmetry in Antenna Theory. *Symmetry*. 2019; 11(4):486.
https://doi.org/10.3390/sym11040486

**Chicago/Turabian Style**

Silveirinha, Mário G.
2019. "Time-reversal Symmetry in Antenna Theory" *Symmetry* 11, no. 4: 486.
https://doi.org/10.3390/sym11040486