Single Image Super Resolution Technique: An Extension to True Color Images
Abstract
:1. Introduction
2. Super-Resolution Techniques
3. Implementation
3.1. Input RGB Image
3.2. Channeling of Image
3.3. Low-Resolution Image IL
3.4. Up-Sampling Image IH(n)
Algorithm 1 Single super Image resolution algorithm |
Input: A true color image of 512 × 512 dimension |
Initialization: Channeling of input image to receive R, G, and B channels. |
Repeat 1 to 6 for I times |
1. Down-sampling of image in order to get the low-resolution image IL. |
2. Achieve the up-sampled image by using the up-sampling algorithm shown in Figure 2. |
3. Apply the Gaussian filter on the output came from step 2. |
4. Generate the down-sampled image IHdown |
5. Reconstruction error: Use the formula described in Equation (7) for the computation of reconstruction error |
6. Back Projection: Back projection is calculated using Equation (8). |
7. Combination of the three channels back to get the desired output. |
Output: Super-resolved image. |
3.5. Down-Sampling and Gaussain Filter
3.6. UpSampling of the Error and Reconstruction
3.7. Back Projection Error
3.8. Combining of the RGB Channel
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, S.C.; Park, M.K.; Kang, M.G. Super-resolution image reconstruction: A technical review. IEEE Signal Process. Mag. 2003, 20, 21–36. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Wang, J.; Jin, P.; Liu, L.; Mei, D. Image Super-Resolution Based on Sparse Representation via Direction and Edge Dictionaries. Math. Probl. Eng. 2017, 2017, 3259357. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Li, J.; Yuan, Q.; Zhang, H.; Zhang, L. Image super-resolution: The techniques, applications, and future. Signal Process. 2016, 128, 389–408. [Google Scholar] [CrossRef]
- Nasrollahi, K.; Moeslund, T.B. Super-resolution: A comprehensive survey. Mach. Vis. Appl. 2004, 25, 1423–1468. [Google Scholar] [CrossRef]
- Tian, J.; Ma, K.K. A survey on super-resolution imaging. Signal Image Video Process. 2011, 5, 329–342. [Google Scholar] [CrossRef]
- Takeda, H.; Milanfar, P.; Protter, M.; Elad, M. Super-resolution without explicit subpixel motion estimation. IEEE Trans. Image Process. 2009, 18, 1958–1975. [Google Scholar] [CrossRef]
- Ng, M.K.; Shen, H.; Lam, E.Y.; Zhang, L. A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP J. Adv. Signal Process. 2007, 1, 074585. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, L.; Shen, H.; Li, P. Adaptive multiple-frame image super-resolution based on U-curve. IEEE Trans. Image Process. 2010, 19, 3157–3170. [Google Scholar] [CrossRef]
- Liu, C.; Sun, D. On Bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 346–360. [Google Scholar] [CrossRef]
- Takeda, H.; Farsiu, S.; Milanfar, P. Kernel Regression for Image Processing and Reconstruction. Ph.D. Thesis, University of California, Santa Cruz, CA, USA, 2006. [Google Scholar]
- Zhang, H.; Zhang, L.; Shen, H. A blind super-resolution reconstruction method considering image registration errors. Int. J. Fuzzy Syst. 2015, 17, 353–364. [Google Scholar] [CrossRef]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Variational Bayesian super resolution. IEEE Trans. Image Process. 2011, 20, 984–999. [Google Scholar] [CrossRef]
- Su, H.; Tang, L.; Wu, Y.; Tretter, D.; Zhou, J. Spatially adaptive block-based super-resolution. IEEE Trans. Image Process. 2012, 21, 1031–1045. [Google Scholar] [PubMed]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 7, 674–693. [Google Scholar] [CrossRef]
- Rioul, O.; Duhamel, P. Fast algorithms for discrete and continuous wavelet transforms. IEEE Trans. Inf. Theory 1992, 38, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Newland, D.E. Harmonic wavelet analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1993, 443, 203–225. [Google Scholar] [CrossRef]
- Dupnchel, L.; Milanfar, P.; Ruckebusch, C.; Huvenne, J.P. Super-resolution and Raman chemical imaging: From multiple low resolution images to a high resolution image. Anal. Chim. Acta 2008, 607, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Ksomastsu, T.; Aizawa, K.; Igarashi, T.; Saito, T. Signal processing based method for acquiring very high resolution images with multiple cameras and its theoretical analysis. IEEE Proc. I Commun. Speech Vis. 1993, 140, 19–24. [Google Scholar]
- Li, J.M.; Qu, Y.Y.; Gu, Y.; Fang, T.Z.; Li, C.H. Super-resolution based on fast linear Kernal regression. In Proceedings of the International conference on Machine Learning and Cybernetics, Tianjin, China, 14–17 July 2013; pp. 333–339. [Google Scholar]
- Parandeh Gheibi, A.; Rahimian, M.A.; Akhaee, M.A.; Ayremlou, A.; Marvasti, F. Compensating for distortions in interpolation of two-dimensional signals using improved iterative techniques. In Proceedings of the 17th International Conference on Telecommunications, Doha, Qatar, 4–7 April 2010; pp. 929–934. [Google Scholar]
- Temizel, A.; Vlachos, T. Image resolution upscaling in the wavelet domain using directional cycle spinning. J. Electron. Imaging 2005, 14, 040501. [Google Scholar] [Green Version]
- Woo, D.H.; Eom, I.K.; Kim, Y.S. Image interpolation based on inter-scale dependency in wavelet domain. In Proceedings of the International Conference on Image Processing, Singapore, 24–27 October 2004; pp. 1687–1690. [Google Scholar]
- Sun, L.; Han, F.; Cai, C.; Su, L. Partially supervised anchored neighborhood regression for image super-resolution through FoE features. Neurocomputing 2018, 275, 2341–2354. [Google Scholar] [CrossRef]
- Khan, S.; Bianchi, T. Ant Colony Optimiazation (ACO) based Data Hiding in Image Complex Region. Int. J. Electr. Comput. Eng. 2018, 8, 379–389. [Google Scholar]
- Qiang, Y. Image denoising based on Haar wavelet transform. In Proceedings of the International Conference on Electronics and Optoelectronics, Dalian, China, 29–31 July 2011; Volume 3, pp. V3–V129. [Google Scholar]
- Deshpande, A.; Patavardhan, P.P.; Rao, D.H. Iterated Back Projection Based Super-Resolution for Iris Feature Extraction. Procedia Comput. Sci. 2015, 48, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Gormus, E.T.; Canagarajah, C.N.; Achim, A.M. Exploiting spatial domain and wavelet domain cumulants for fusion of SAR and optical images. In Proceedings of the International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 1209–1212. [Google Scholar]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef]
- Hoyer, P.O.; Hyvärinen, A. A multi-layer sparse coding network learns contour coding from natural images. Vis. Res. 2002, 42, 1593–1605. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, P.O. Non-negative sparse coding. In Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 4–6 September 2002; pp. 557–565. [Google Scholar]
- Hoyer, P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5, 1457–1469. [Google Scholar]
- Kale, V.U.; Khalsa, N.N. Performance evaluation of various wavelets for image compression of natural and artificial images. Int. J. Comput. Sci. Commun. 2010, 1, 179–184. [Google Scholar]
- Naik, S.; Borisagar, V. A novel super resolution algorithm using interpolation and lwt based denoising method. Int. J. Image Process. 2012, 6, 198–206. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution as sparse representation of raw image patches. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008. [Google Scholar]
- Glasner, D.; Bagon, S.; Irani, M. Super-resolution from a single image. In Proceedings of the International Conference on Computer Vision (ICCV), Kyoto, Japan, 27 September–4 October 2009; pp. 349–356. [Google Scholar]
- Nguyen, N.; Milanfar, P.; Golub, G.H. A computationally efficient super resolution image reconstruction algorithm. IEEE Trans. Image Process. 2001, 10, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Huang, J.B.; Yang, M.H. Exploiting self-similarities for single frame super-resolution. In Computer Vision–ACCV 2010, Proceedings of the Asian Conference on Computer Vision (ACCV), Queenstown, New Zealand, 8–12 November 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 497–510. [Google Scholar]
- Yang, M.C.; Wang, Y.C.F. A self-learning approach for single image super-resolution. IEEE Trans. Multimed. 2013, 15, 498–508. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, L.; Shi, G. Centralized sparse representation for image restoration. In Proceedings of the International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 1259–1266. [Google Scholar]
- Naik, S.; Patel, N. Single image super resolution in spatial and wavelet domain. Int. J. Multimedia Its Appl. 2013, 5, 23–32. [Google Scholar] [CrossRef]
- Nancy, J.; Wilson, J.; Kumar, K.V. Panoramic dental X-ray image compression using wavelet filters. Int. J. Comput. Sci. Issues 2013, 10, 191–200. [Google Scholar]
- Arora, R.; Sharma, M.L.; Birla, N.; Bala, A. An Algorithm for image compression using 2D wavelet transform. Int. J. Eng. Sci. Technol. 2011, 3, 2758–2764. [Google Scholar]
- Kavitha, P. Compression-innovated using wavelets in image. Int. J. Innov. Res. Comput. Commun. Eng. 2013, 1, 221–230. [Google Scholar]
- Irani, M.; Peleg, S. Improving resolution by image registration. CVGIP Graph. Models Image Process. 1991, 53, 231–239. [Google Scholar] [CrossRef]
- Makwana, R.R.; Mehta, N.D. Single image super-resolution via iterative back projection based Canny edge detection and a Gabor filter prior. Int. J. Soft Comput. Eng. 2013, 3, 379–384. [Google Scholar]
- Shang, Y. Resilient multiscale coordination control against adversarial nodes. Energies 2018, 11, 1844. [Google Scholar] [CrossRef]
S. No | Test Images | PSNR | |
---|---|---|---|
Bi-cubic Interpolation | Proposed Method | ||
1 | Lena | 32.32 | 32.83 |
2 | Mona Lisa | 23.99 | 26.37 |
3 | Baboon | 24.12 | 28.37 |
4 | Einstein | 30.16 | 31.05 |
5 | Messi | 35.37 | 37.07 |
6 | Brain | 30.58 | 30.54 |
7 | Baby | 37.34 | 38.76 |
S. No | Test Images | PSNR | |
---|---|---|---|
Bi-cubic Interpolation | Proposed Method | ||
1 | Lena | 38.07 | 37.57 |
2 | Mona Lisa | 259 | 149 |
3 | Baboon | 251.2 | 94.5 |
4 | Einstein | 62.5 | 50.96 |
5 | Messi | 18.8 | 12.74 |
6 | Brain | 63.7 | 62.8 |
7 | Baby | 11.9 | 8.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfan, M.A.; Khan, S.; Arif, A.; Khan, K.; Khaliq, A.; Memon, Z.A.; Ismail, M. Single Image Super Resolution Technique: An Extension to True Color Images. Symmetry 2019, 11, 464. https://doi.org/10.3390/sym11040464
Irfan MA, Khan S, Arif A, Khan K, Khaliq A, Memon ZA, Ismail M. Single Image Super Resolution Technique: An Extension to True Color Images. Symmetry. 2019; 11(4):464. https://doi.org/10.3390/sym11040464
Chicago/Turabian StyleIrfan, Muhammad Abeer, Sahib Khan, Arslan Arif, Khalil Khan, Aleem Khaliq, Zain Anwer Memon, and Muhammad Ismail. 2019. "Single Image Super Resolution Technique: An Extension to True Color Images" Symmetry 11, no. 4: 464. https://doi.org/10.3390/sym11040464