Connection Problem for Sums of Finite Products of Legendre and Laguerre Polynomials
Abstract
:1. Preliminaries
2. Introduction
3. Proof of Theorem 1
- (a)
- (b)
- (c)
- (d)
- (e)
- (a)
- (b)
- (c)
- (d)
4. Proof of Theorem 2
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions, Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Beals, R.; Wong, R. Special functions and orthogonal polynomials. In Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Kim, D.S.; Kim, T.; Dolgy, D.V. Some identities on Laguerre polynomials in connection with Bernoulli and Euler numbers. Discret. Dyn. Nat. Soc. 2012, 2012, 619197. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Rim, S. Some identities involving Gegenbauer polynomials. Adv. Differ. Equ. 2012, 2012, 219. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T.; Rim, S.; Lee, S.H. Hermite polynomials and their applications associated with Bernoulli and Euler numbers. Discret. Dyn. Nat. Soc. 2012, 2012, 974632. [Google Scholar] [CrossRef]
- Kim, D.S.; Rim, S.; Kim, T. Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials. J. Inequal. Appl. 2012, 2012, 227. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. Extended Laguerre polynomials associated with Hermite, Bernoulli, and Euler numbers and polynomials. Abstr. Appl. Anal. 2012, 2012, 957350. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V. Some identities on Bernoulli and Hermite polynomials associated with Jacobi polynomials. Discret. Dyn. Nat. Soc. 2012, 2012, 584643. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Park, J.-W. Sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials. J. Inequal. Appl. 2018, 2018, 148. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Park, J.-W. Sums of finite products of Legendre and Laguerre polynomials. Adv. Differ. Equ. 2018, 2018, 277. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Ryoo, C.S. Representing sums of finite products of Chebyshev polynomials of third and fourth kinds by Chebyshev polynomials. Symmetry 2018, 10, 258. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, G.-W.; Kwon, J. Sums of finite products of Legendre and Laguerre polynomials by Chebyshev polynomials. Adv. Stud. Contemp. Math. 2018, 28, 551–565. [Google Scholar]
- Kim, T.; Kim, D.S.; Kwon, J.; Dolgy, D.V. Expressing sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials by several orthogonal polynomials. Mathematics 2018, 6, 210. [Google Scholar] [CrossRef]
- Cesarano, C.; Fornaro, C. A note on two-variable Chebyshev polynomials. Georgian Math. J. 2017, 24, 339–349. [Google Scholar] [CrossRef]
- Cesarano, C.; Fornaro, C.; Vazquez, L. A note on a special class of Hermite polynomials. Int. J. Pure Appl. Math. 2015, 98, 261–273. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, L.C.; Jang, G. Sums of finite products of Genocchi functions. Adv. Differ. Equ. 2017, 2017, 268. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Kim, D.S.; Kim, T.; Kwon, J. Sums of finite products of Bernoulli functions. Adv. Differ. Equ. 2017, 2017, 237. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S.; Jang, G.-W.; Kwon, J. Sums of finite products of Euler functions. In Advances in Real and Complex Analysis with Applications; Trends in Mathematics; Springer: Berlin, Germany, 2017; pp. 243–260. [Google Scholar]
- Kim, T.; Dolgy, D.V.; Kim, D.S. Representing sums of finite products of Chebyshev polynomials of second kind and Fibonacci polynomials in terms of Chebyshev polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 321–335. [Google Scholar]
- Araci, S.; Acikgoz, M.; Bagdasaryan, A.; Sen, E. The Legendre polynomials associated with Bernoulli, Euler, Hermite and Bernstein polynomials. Turk. J. Anal. Number Theory 2013, 1, 1–3. [Google Scholar] [CrossRef]
- Khan, W.A.; Araci, S.; Acikgoz, M. A new class of Laguerre-based Apostol type polynomials. Cogent Math. 2016, 3, 1243839. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Hwang, K.-W.; Kim, D.S.; Dolgy, D.V. Connection Problem for Sums of Finite Products of Legendre and Laguerre Polynomials. Symmetry 2019, 11, 317. https://doi.org/10.3390/sym11030317
Kim T, Hwang K-W, Kim DS, Dolgy DV. Connection Problem for Sums of Finite Products of Legendre and Laguerre Polynomials. Symmetry. 2019; 11(3):317. https://doi.org/10.3390/sym11030317
Chicago/Turabian StyleKim, Taekyun, Kyung-Won Hwang, Dae San Kim, and Dmitry V. Dolgy. 2019. "Connection Problem for Sums of Finite Products of Legendre and Laguerre Polynomials" Symmetry 11, no. 3: 317. https://doi.org/10.3390/sym11030317
APA StyleKim, T., Hwang, K. -W., Kim, D. S., & Dolgy, D. V. (2019). Connection Problem for Sums of Finite Products of Legendre and Laguerre Polynomials. Symmetry, 11(3), 317. https://doi.org/10.3390/sym11030317