Continuous Wavelet Transform of Schwartz Tempered Distributions in S′ (
R
n
)
Abstract
:1. Introduction
2. Structure of Generalized Functions of Slow Growth
3. Wavelet Transform of Tempered Distributions in and Its Inversion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bremmermann, H. Distributions, Complex Variables and Fourier Transforms; Addison-Wesley Publishing Company Inc.: Boston, MA, USA, 1965. [Google Scholar]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis in Normed Spaces; Macmillan: New York, NY, USA, 1963. [Google Scholar]
- Pandey, J.N. The Hilbert Transform of Schwartz Distributions and Applications; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Pandey, J.N.; Upadhyay, S.K. Continuous Wavelet transform and window functions. Proc. Am. Math. Soc. 2015, 143, 4750–4773. [Google Scholar] [CrossRef]
- Schwartz, L. Theorie des Distributions; Hermann: Paris, France, 1966. [Google Scholar]
- Shilov, G.E. Generalized Functions and Partial Differential Equations; Gordon and Breach Publishing Co.: Chelmsford, MA, USA, 2005. [Google Scholar]
- Treves, F. Topological Vector Spaces, Distributions and Kernels; Academic Press: New York, NY, USA, 1997. [Google Scholar]
- Vladimirov, V.S. Generalized Functions in Mathematical Physics; Yankovasky, G., Ed.; Central Books Ltd: London, UK, 1976; ISBN 9780714715452. [Google Scholar]
- Walter, G.G.; Shen, X. Wavelets and Other Orthogonal Systems, 2nd ed.; Chapman and Hall (CRC Press): Boca Raton, FL, USA, 2009. [Google Scholar]
- Yosida, K. Functional Analysis; Springer: Berlin, Germany, 1995. [Google Scholar]
- Zemanian, A.H. Distribution Theory and Transform Analysis; McGraw-Hill Book Company: New York, NY, USA, 1965. [Google Scholar]
- Zemanian, A.H. Generalized Integral Transformation; Inter Science Publishers, John Wiley and Sons Inc.: Hoboken, NJ, USA, 1968. [Google Scholar]
- Pandey, J.N.; Jha, N.K.; Singh, O.P. The continuous wavelet transform in n-dimensions. Int. J. Wavelets Multiresolut. Inf. Process. 2016, 14, 13. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Upadhyay, S.K.; Khatterwani, K. A family of pseudo-differential operators on the Schwartz space associated with the fractional Fourier transform. Russ. J. Math. Phys. 2017, 24, 534–543. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; University of Lowell: Lowell, MA, USA, 1990. [Google Scholar]
- Meyer, Y. Wavelets and Operators; Cambridge Studies in Advanced Mathematics (Series 37); Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Pathak, R.S. The Wavelet Transform; Atlantic Press/World Scientific: Paris, France, 2009. [Google Scholar]
- Holschneider, M. Wavelets an Analysis Tool; Oxford Science Publications, Clarendon (Oxford University) Press: Oxford, UK, 1995. [Google Scholar]
- Weisz, F. Convergence of the inverse continuous wavelet transform in Wiener amalgam spaces. Analysis 2015, 35, 33–46. [Google Scholar] [CrossRef]
- Weisz, F. Inversion Formulas for the Continuous Wavelet Transform. Acta Math. Hungar. 2013, 138, 237–258. [Google Scholar] [CrossRef]
- Postnikov, E.B.; Lebedeva, E.A.; Lavrova, A.I. Computational implementation of the inverse continuous wavelet transform without a requirement of the admissibility condition. Appl. Math. Comput. 2016, 282, 128–136. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, J.N.; Maurya, J.S.; Upadhyay, S.K.; Srivastava, H.M.
Continuous Wavelet Transform of Schwartz Tempered Distributions in S′ (
Pandey JN, Maurya JS, Upadhyay SK, Srivastava HM.
Continuous Wavelet Transform of Schwartz Tempered Distributions in S′ (
Pandey, Jagdish Narayan, Jay Singh Maurya, Santosh Kumar Upadhyay, and Hari Mohan Srivastava.
2019. "Continuous Wavelet Transform of Schwartz Tempered Distributions in S′ (