Next Article in Journal
Relationship between Motor Laterality and Aggressive Behavior in Sheepdogs
Next Article in Special Issue
Continuous Wavelet Transform of Schwartz Tempered Distributions in S′ ( R n )
Previous Article in Journal
β–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System
Previous Article in Special Issue
Starlike Functions Related to the Bell Numbers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Dunkl–Type Generalization of Szász–Kantorovich Operators via Post–Quantum Calculus

1
Department of Computer Science (SEST), Jamia Hamdard, New Delhi 110062, India
2
Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
*
Author to whom correspondence should be addressed.
Symmetry 2019, 11(2), 232; https://doi.org/10.3390/sym11020232
Submission received: 24 December 2018 / Revised: 7 February 2019 / Accepted: 11 February 2019 / Published: 15 February 2019
(This article belongs to the Special Issue Integral Transforms and Operational Calculus)

Abstract

:
In this paper, we define the ( p , q ) -variant of Szász–Kantorovich operators via Dunkl-type generalization generated by an exponential function and study the Korovkin-type results. We also obtain the convergence of our operators in weighted space by the modulus of continuity, Lipschitz class, and Peetre’s K-functionals. The extra parameter p provides more flexibility in approximation and plays an important role in symmetrizing these newly-defined operators.

1. Introduction and Preliminaries

Bernstein [1] and q-Bernstein ([2,3]) operators have become very important tools in the study of approximation theory and several branches of applied sciences and engineering. For [ r ] p , q = p r q r p q , r = 0 , 1 , 2 , , 0 < q < p 1 , the ( p , q ) -Bernstein operators were introduced by Mursaleen et al. [4]:
B r p , q ( g ; y ) = 1 p r ( r 1 ) 2 m = 0 r r m p , q p m ( m 1 ) 2 y k s = 0 r m 1 ( p s q s y ) g [ m ] p , q p m r [ r ] p , q , y [ 0 , 1 ] ,
where [ r ] p , q denotes the ( p , q ) -integer.
The ( p , q ) -analogues of exponential functions are defined in two forms as follows:
e r p , q ( y ) = r = 0 p r ( r 1 ) 2 y r [ r ] p , q ! , E r p , q ( y ) = r = 0 q r ( r 1 ) 2 y r [ r ] p , q ! ,
with the property that e r p , q ( y ) E r p , q ( y ) = 1 . In the case of p = 1 , e r p , q ( y ) and E r p , q ( y ) reduce to q-analogues of exponential functions.
The Dunkl-type generalization of Szász operators [5] was introduced by Sucu [6] and the q-analogue by Ben Cheikh et al. [7]. Içöz [8] introduced the q-Dunkl analogue of Szász operators defined by:
D η q ( g ; y ) = 1 e η q ( [ r ] q y ) m = 0 ( [ r ] q y ) m γ η q ( m ) g 1 q 2 η θ m + m 1 q r
where η > 1 2 , y 0 , 0 < q < 1 , g C [ 0 , ) and C [ 0 , ) is the set of all continuous functions defined on [ 0 , ) .
The ( p , q ) - and q-Dunkl analogues have been studied by several authors (see [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]). For the most recent work on ( p , q ) -approximation, we refer to [25,26,27]. Recently. Alotaibi et al. [28] generalized the q-Dunkl analogue of Szász operators via ( p q ) -calculus as follows:
D η p , q ( g ; y ) = 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p m ( m 1 ) 2 g p 2 η θ m + m q 2 η θ m + m p m 1 ( p r q r )
where for q ( 0 , 1 ) , p ( q , 1 ] , and η > 1 2 , the ( p , q ) -Dunkl analogue of exponential functions is defined by:
e η p , q = r = 0 p r ( r 1 ) 2 y r γ η p , q ( r ) , y [ 0 , )
γ η p , q ( r ) = i = 0 [ r + 1 2 ] 1 p 2 η ( 1 ) i + 1 + 1 ( p 2 ) i p 2 η + 1 ( q 2 ) i q 2 η + 1 j = 0 [ r 2 ] 1 p 2 η ( 1 ) j + 1 ( p 2 ) j p 2 ( q 2 ) j q 2 ( p q ) r ,
γ η p , q ( r + 1 ) = p 2 η ( 1 ) r + 1 + 1 ( p 2 η θ r + 1 + r + 1 q 2 η θ r + 1 + r + 1 ) ( p q ) γ η p , q ( r ) ,
θ r = 0 for r = 2 , = 1 , 2 , , n 1 for r = 2 + 1 , = 1 , 2 , , n .
and [ r 2 ] denotes the greatest integer function; also, we have:
( α β ) p , q r = j = 0 r 1 ( p j α q j β ) if r = 1 , 2 , , n 1 if r = 0 .
Lemma 1.
For g ( t ) = 1 , t , t 2
1 * . D η p , q ( 1 ; y ) = 1 ;
2 * . D η p , q ( t ; y ) = y ;
3 * . y 2 + q 2 η [ r ] p , q [ 1 2 η ] p , q e η p , q ( q p [ r ] p , q y ) e η p , q ( [ r ] p , q y ) y D η p , q ( t 2 ; y ) y 2 + 1 [ r ] p , q [ 1 + 2 η ] p , q y .

2. New Operators and Estimations of Moments

In this section, we construct the ( p , q ) -variant of Szász–Kantorovich operators via Dunkl-type generalization as follows.
Definition 1.
For any y [ 0 , ) , g C [ 0 , ) r N and 0 < q < p 1 , we define:
K η p , q ( g ; y ) = [ r ] p , q e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p ( m + 2 η θ m ) p m ( m 1 ) 2 q A q A + B g t q p m 1 d p , q t .
We use the following relation:
[ m + 1 + 2 η θ m ] p , q = q [ m + 2 η θ m ] p , q + p m + 2 η θ m ,
A = [ m + 2 η θ m ] p , q [ r ] p , q , B = p m + 2 η θ m [ r ] p , q
where the parameter η 0 .
To show the uniform convergence of operators K η p , q ( · ; · ) , we take q = q r , p = p r with 0 < q r < 1 and q r < p r 1 such that:
lim r p r 1 , lim r q r 1 , lim r p r r u , lim r q r r v , ( 0 < u , v 1 ) .
For p = 1 , these operators reduce to the operators defined in [29]. For η = 0 , these are reduced to the ( p , q ) -variant of Kantorovich-type operators defined by [30].
Lemma 2.
Let g ( t ) = g i such that g i = t i 1 for i = 1 , 2 , 3 . Then, we have:
( 1 ) K η p , q ( g 1 ; y ) = 1
( 2 ) K η p , q ( g 2 ; y ) 2 [ 2 ] p , q y + 1 [ 2 ] p , q q [ r ] p , q
( 3 ) K η p , q ( g 3 ; y ) 3 [ 3 ] p , q y 2 + 3 [ 3 ] p , q [ r ] p , q [ 1 + 2 η ] p , q + 1 q [ r ] p , q y + 1 [ 3 ] p , q q 2 [ r ] p , q 2 .
Proof. 
Using (9) and (10), we get:
q A q A + B f t q p k 1 d p , q t = B for g ( t ) = g 1 B [ 2 ] p , q p m 1 q 2 q A + B for g ( t ) = g 2 B [ 3 ] p , q p 2 ( m 1 ) q 2 3 q 2 A 2 + 3 q A B + B 2 for g ( t ) = g 3
If we take g ( t ) = g 1 , then from (12), we have:
K η p , q ( g 1 ; y ) = [ r ] p , q e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p ( m + 2 η θ m ) p m ( m 1 ) 2 q A q A + B d p , q t = 1 .
For g ( t ) = g 2 , (12) implies:
K η p , q ( g 2 ; y ) = 1 [ 2 ] p , q q [ r ] p , q 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p ( m + 2 η θ m ) p m ( m 1 ) 2 × p 1 + 2 η θ m 2 q [ m + 2 η θ m ] p , q + p m + 2 η θ m = 2 [ 2 ] p , q [ r ] p , q 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p ( m 1 ) ( m 2 ) 2 [ m + 2 η θ m ] p , q + 1 [ 2 ] p , q q [ r ] p , q 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p 1 + 2 η θ m = 2 [ 2 ] p , q 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p m ( m 1 ) 2 p m + 2 η θ m q m + 2 η θ m p m 1 ( p r q r ) + 1 [ 2 ] p , q q [ r ] p , q 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p 1 + 2 η θ m .
Separating into even and odd terms, we get:
K η p , q ( g 2 ; y ) = 2 [ 2 ] p , q y + p [ 2 ] p , q q [ r ] p , q for r = 0 , 2 , 4 , K η p , q ( g 2 ; y ) = 2 [ 2 ] p , q y + p 1 + 2 η [ 2 ] p , q q [ r ] p , q for r = 1 , 3 , 5 , .
Since 0 < q < p 1 , η 0 , and p 1 + 2 η 1 , we have:
K η p , q ( g 2 ; y ) 2 [ 2 ] p , q y + 1 q [ 2 ] p , q [ r ] p , q .
Similarly for g ( t ) = g 3 , we have:
K η p , q ( g 3 ; y ) = 3 [ 3 ] p , q [ r ] p , q 3 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p m ( m 1 ) 2 2 ( m 1 ) [ m + 2 η θ m ] p , q 2 + 3 [ 3 ] p , q q [ r ] p , q 3 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p m + 2 η θ m p m ( m 1 ) 2 2 ( m 1 ) [ m + 2 η θ m ] p , q + 1 [ 3 ] p , q q 2 [ r ] p , q 2 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p 2 ( m + 2 η θ m ) p m ( m 1 ) 2 2 ( m 1 ) = 3 [ 3 ] p , q [ r ] p , q 2 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p m ( m 1 ) 2 p m + 2 η θ m q m + 2 η θ m p m 1 ( p r q r ) 2 + 3 [ 3 ] p , q q [ r ] p , q 2 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p m ( m 1 ) 2 p m + 2 η θ m q m + 2 η θ m p m 1 ( p r q r ) + 1 [ 3 ] p , q q 2 [ r ] p , q 2 1 e η p , q ( [ r ] p , q y ) m = 0 ( [ r ] p , q y ) m γ η p , q ( m ) p m ( m 1 ) 2 p 2 ( 1 + 2 η θ m ) .
Hence, for m = 0 , 2 , 4 , , we have:
K η p , q ( g 3 ; y ) 3 [ 3 ] p , q y 2 + 3 [ 3 ] p , q [ r ] p , q [ 1 + 2 η ] p , q + p q [ r ] p , q y + p 2 q 2 [ 3 ] p , q [ r ] p , q 2 ,
and for m = 1 , 3 , 5 , ,
K η p , q ( g 3 ; y ) 3 [ 3 ] p , q y 2 + 3 [ 3 ] p , q [ r ] p , q [ 1 + 2 η ] p , q + p q [ r ] p , q y + p 2 [ 3 ] p , q q 2 [ r ] p , q 2 .
Therefore,
K η p , q ( g 3 ; y ) 3 [ 3 ] p , q y 2 + 3 [ 3 ] p , q [ r ] p , q [ 1 + 2 η ] p , q + 1 q [ r ] p , q y + 1 [ 3 ] p , q q 2 [ r ] p , q 2 .
This completes the proof of Lemma 2. □
Lemma 3.
Let χ i = ( t y ) i for i = 1 , 2 . Then, we have:
K η p , q ( χ i ; y ) 2 [ 2 ] p , q 1 y + 1 [ 2 ] p , q q [ r ] p , q f o r i = 1 3 [ 3 ] p , q + 1 4 [ 2 ] p , q y 2 + 1 q [ r ] p , q 3 [ 3 ] p , q 1 [ r ] p , q + q [ 1 + 2 η ] p , q 2 [ 2 ] p , q y + 1 [ 3 ] p , q q 2 [ r ] p , q 2 f o r i = 2 .

3. Main Results

In this section, we study the Korovkin-type approximation theorems for positive linear operators K η p , q ( · ; · ) defined by (8). We denote the set of all bounded and continuous functions by C B [ 0 , ) equipped with norm g C B = sup y [ 0 , ) g ( y ) . We write:
E : = { g ( y ) : y [ 0 , ) , g ( y ) 1 + y 2 is convergent as y } .
Let:
B σ [ 0 , ) = g : | g ( y ) | M g σ ( y ) ,
C σ [ 0 , ) = g : g B σ [ 0 , ) C [ 0 , ) ,
C σ k [ 0 , ) = g : g C σ [ 0 , ) and lim y g ( y ) σ ( y ) = k ,
where σ ( y ) is the weight function given by σ ( y ) = 1 + y 2 , k is a constant, and M g depends on g. C σ [ 0 , ) is equipped with the norm | | g | | σ = sup y [ 0 , ) | g ( y ) | σ ( y ) .
Theorem 1.
Let q r , p r be the real numbers, with q r ( 0 , 1 ) and p r ( q r , 1 ] for every integer r, satisfying ( q r ) 1 and ( p r ) 1 as r . Then, for every g C [ 0 , ) E ,
lim r K η p r , q r ( g ; y ) = g ( y )
uniformly on each compact subset of [ 0 , ) .
Proof. 
For the proof of the uniform convergence of the operators K η p r , q r on each compact subset of [ 0 , ) , we apply the well-known Korovkin theorem [31]. It is sufficient to show that lim r K η p r , q r g i ; y = y i 1 , where g i = t i 1 for i = 1 , 2 , 3 .
Clearly, if q r 1 , p r 1 as r , then 1 [ r ] p r , q r 0 , r [ r ] p r , q r 1 . This yields that:
lim r K η p r , q r ( g 1 ; y ) = 1 , lim r K η p r , q r ( g 2 ; y ) = y , lim r K η p r , q r ( g 3 ; y ) = y 2 .
 □
Theorem 2.
Let q r , p r be the real numbers, with q r ( 0 , 1 ) and p r ( q r , 1 ] for every integer r, satisfying ( q r ) 1 and ( p r ) 1 as r . Then, for every g C σ k [ 0 , ) , we have:
lim r K η p r , q r ( g ; y ) g σ = 0 .
Proof. 
Suppose g ( t ) C σ k [ 0 , ) and g ( t ) = g τ , where g τ = t τ 1 for τ = 1 , 2 , 3 . Then, from the well-known Korovkin theorem, we have K η p r , q r ( g τ ; y ) y τ 1 ( r ) uniformly for each τ = 1 , 2 , 3 . Hence, from Lemma 2, we have:
lim r K η p r , q r g 1 ; y 1 σ = 0 .
For τ = 2 ,
K η p r , q r g 2 ; y y σ = sup y 0 K η p r , q r ( g 2 ; y ) y 1 + y 2 2 [ 2 ] p r , q r 1 sup y 0 y 1 + y + 1 q r [ 2 ] p r , q r [ r ] p r , q r sup y 0 1 1 + y .
Then:
lim r K η p r , q r g 2 ; y y σ = 0 .
Similarly, if we take τ = 3 ,
K η p r , q r g 3 ; y y 2 σ = sup y 0 K η p r , q r ( g 3 ; y ) y 2 1 + y 2 3 [ 3 ] p r , q r 1 sup y 0 y 2 1 + y 2 + 3 [ 3 ] p r , q r [ r ] p r , q r [ 1 + 2 η ] p r , q r + 1 q r [ r ] p r , q r sup y 0 y 1 + y 2 + 1 [ 3 ] p r , q r q r 2 [ r ] p r , q r 2 sup y 0 1 1 + y 2 ,
lim r K η p r , q r g 3 ; y y 2 σ = 0 .
This completes the proof. □
The modulus of continuity ω b ( g ; δ ) of the function g C ˜ [ 0 , ) is defined by:
ω b ( g ; δ ) = sup t y δ ; sup y , t [ 0 , b ] g ( t ) g ( y )
where C ˜ [ 0 , ) denotes the space of uniformly-continuous functions on [ 0 , ) . It is obvious that lim δ 0 + ω b ( g ; δ ) = 0 and for g C [ 0 , ) :
g ( t ) g ( y ) t y δ + 1 ω b ( g ; δ ) .
Theorem 3.
Let q r , p r be the real numbers, with q r ( 0 , 1 ) and p r ( q r , 1 ] for every integer r, satisfying ( q r ) 1 and ( p r ) 1 as r . Then, for every g C σ [ 0 , ) :
K η p r , q r ( g ; y ) g ( y ) 2 ω b + 1 ( g ; δ η ( y ) ) + M g ( 1 + b 2 ) δ η ( y ) 2 ,
where δ η ( y ) = K η p r , q r χ 2 ; y , M g is a constant depending only on g and K η p r , q r χ 2 ; y is defined by Lemma 3; and [ 0 , b + 1 ] [ 0 , ) , b > 0 .
Proof. 
Let y [ 0 , b ] and t > b + 1 , with t > 0 . Then, for δ > 0 , we have:
g ( t ) g ( y ) ω b + 1 ( g ; t y ) 1 + t y δ ω b + 1 ( g ; δ ) .
By applying the Cauchy–Schwarz inequality and the linearity of K η p r , q r :
K r , η p r , q r g ( t ) g ( y ) ; y 1 + 1 δ K η p r , q r ( t y ) 2 ; y 1 2 ω b + 1 ( g ; δ ) .
For t y > 1 , we have:
g ( t ) g ( y ) M g 2 + y 2 + t 2 M g 2 + 3 y 2 + 2 ( t y ) 2 2 M g ( 1 + b 2 ) ( t y ) 2
K η p r , q r g ( t ) g ( y ) ; 2 M g ( 1 + b 2 ) K η p r , q r ( t y ) 2 ; y .
From (21) and (22), we easily see that:
K η p r , q r ( g ; y ) g ( y ) K η p r , q r g ( t ) g ( y ) ; y 1 + 1 δ K η p r , q r ( t y ) 2 ; y 1 2 ω b + 1 ( g ; δ ) + 2 M g ( 1 + b 2 ) K η p r , q r ( t y ) 2 ; y = 1 + 1 δ K η p r , q r χ 2 ; y 1 2 ω b + 1 ( g ; δ ) + 2 M g ( 1 + b 2 ) K η p r , q r χ 2 ; y
If we choose δ = δ η ( y ) = K η p r , q r χ 2 ; y , then we get our result. □
For any g C [ 0 , ] , L > 0 , 0 < ν 1 and γ 1 , γ 2 [ 0 , ) , we recall that:
L i p L ( ν ) = g : g ( γ 1 ) g ( γ 2 ) L γ 1 γ 2 ν .
Theorem 4.
Let q r , p r be the real numbers, with q r ( 0 , 1 ) and p r ( q r , 1 ] for every integer r, satisfying ( q r ) 1 and ( p r ) 1 as r . Then, for each g L i p L ( ν ) , we have:
K η p r , q r ( g ; y ) g ( y ) L δ η ( y ) ν ,
where δ η ( y ) is defied by Theorem 3.
Proof. 
Using Theorem 4, (23), and the well-known Hölder’s inequality, we get:
K η p r , q r ( g ; y ) g ( y ) K r , η p r , q r ( g ( t ) g ( y ) ; y ) K η p r , q r g ( t ) g ( y ) ; y L K η p r , q r t y ν ; y L K η p r , q r ( g 1 ; y ) 2 ν 2 K η p r , q r ( t y 2 ; y ) ν 2 = L K η p r , q r ( χ 2 ; y ) ν 2 .
This completes the proof of the theorem. □
We denote:
C B 2 [ 0 , ) = ψ : ψ C B [ 0 , ) and ψ , ψ C B [ 0 , ) ,
| | ψ | | C B 2 ( R + ) = | | ψ | | C B [ 0 , ) + ψ C B [ 0 , ) + ψ C B [ 0 , ) ,
| | ψ | | C B [ 0 , ) = sup y [ 0 , ) | ψ ( y ) | .
Theorem 5.
Let q r , p r be the real numbers, with q r ( 0 , 1 ) and p r ( q r , 1 ] for every integer r, satisfying ( q r ) 1 and ( p r ) 1 as r . Then:
K η p r , q r ( ψ ; y ) ψ ( y ) Υ η ( y ) | | ψ | | C B 2 [ 0 , ) ,
where Υ η ( y ) = δ n ( y ) 1 + δ η ( y ) 2 and δ η ( y ) is defined by Theorem 3.
Proof. 
From the Taylor series expansion for any ψ C B 2 [ 0 , ) , we have:
ψ ( t ) = ψ ( y ) + ψ ( y ) ( t y ) + ψ ( φ ) ( t y ) 2 2 for φ ( y , t ) ,
ψ ( t ) ψ ( y ) P t y + 1 2 Q ( t y ) 2 ,
where:
P = sup y [ 0 , ) ψ ( y ) = | | ψ | | C B [ 0 , ) | | ψ | | C B 2 [ 0 , ) ,
Q = sup y [ 0 , ) ψ ( y ) = | | ψ | | C B [ 0 , ) | | ψ | | C B 2 [ 0 , ) .
Therefore,
ψ ( t ) ψ ( y ) t y + 1 2 ( t y ) 2 | | ψ | | C B 2 [ 0 , ) .
By applying the linearity of K η p r , q r , we get:
K η p r , q r ( ψ ; y ) ψ ( y ) K η p r , q r ( t y ; y ) + 1 2 K η p r , q r ( t y ) 2 ; y | | ψ | | C B 2 [ 0 , ) K η p r , q r χ 2 ; y 1 2 + 1 2 K η p r , q r χ 2 ; y | | ψ | | C B 2 [ 0 , ) = δ η ( y ) + δ η ( y ) 2 2 | | ψ | | C B 2 [ 0 , ) .
This completes the proof of the theorem. □
Peetre’s K-functional K 2 ( g ; δ ) for δ > 0 (see [32]) is defined by:
K 2 ( g ; δ ) = inf y [ 0 , ) δ ψ + | | g ψ | | C B [ 0 , ) C B [ 0 , )
for all ψ C B 2 [ 0 , ) .
For a given positive constant L > 0 :
K 2 ( g ; δ ) L ω 2 ( g ; δ 1 2 ) ,
where the second-order modulus of continuity denoted by ω 2 ( g ; δ ) is defined as:
ω 2 ( g ; δ ) = sup 0 < h < δ , sup y [ 0 , ) | g ( y ) + g ( y + 2 h ) 2 g ( y + h ) | .
Theorem 6.
Let q r , p r be the real numbers, with q r ( 0 , 1 ) and p r ( q r , 1 ] for every integer r, satisfying ( q r ) 1 and ( p r ) 1 as r . Then, for all g C B [ 0 , ) , we have:
K η p r , q r ( g ; y ) g ( y ) 2 A { ω 2 g ; Υ η ( y ) 2 + min 1 ; Υ η ( y ) 2 | | g | | C B [ 0 , ) } ,
where A is a positive constant and Υ η ( y ) is given in Theorem 5.
Proof. 
We take ψ C B 2 [ 0 , ) and apply Theorem (5). Thus:
K η p r , q r ( g ; y ) g ( y ) K η p r , q r ( g ψ ; y ) + K η p r , q r ( ψ ; y ) ψ ( y ) + | g ( y ) ψ ( y ) | 2 | | g ψ | | C B [ 0 , ) + Υ η ( y ) | | ψ | | C B 2 [ 0 , ) = 2 | | g ψ | | C B [ 0 , ) + Υ η ( y ) 2 | | ψ | | C B 2 [ 0 , ) .
By taking the infimum over all ψ C B 2 [ 0 , ) and using (28), we get:
K η p r , q r ( g ; y ) g ( y ) 2 K 2 g ; Υ η ( y ) 2 .
Now, from [33] for all g C B [ 0 , ) , we have the relation:
K 2 ( g ; δ ) A { min ( 1 ; δ ) + ω 2 ( g ; δ ) | | g | | C B [ 0 , ) } ,
where A > 0 is an absolute constant. If we choose δ = Υ η ( y ) 2 , then we get the desired result. □

4. Conclusions

In this paper, we have studied the approximation results via Dunkl generalization of the Szász–Kantorovich operators in ( p , q ) -calculus. These types of modifications enable us to generalize error estimation rather than the classical and q-calculus on the interval [ 0 , ) obtained in [29]. We have also proven the Korovkin-type results and obtained the convergence of our operators in weighted space by the modulus of continuity, Lipschitz class, and Peetre’s K-functionals. We have a more generalized version of the operators [29,30], and if we take η = 0 in (8), then the operators K η p , q reduce to the operators defined by [30].

Author Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Funding

The second author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM), Group Number RG-DES-2017-01-17.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Bernstein, S.N. Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math. Kharkow 1912, 2, 1–2. [Google Scholar]
  2. Lupaş, A. A q-analogue of the Bernstein operator. Univ. Cluj-Napoca Semin. Numer. Stat. Calculus 1987, 9, 85–92. [Google Scholar]
  3. Phillips, G.M. Bernstein polynomials based on the q- integers. The heritage of P.L. Chebyshev, A Festschrift in honor of the 70th-birthday of Professor T. J. Rivlin. Ann. Numer. Math. 1997, 4, 511–518. [Google Scholar]
  4. Mursaleen, M.; Ansari, K.J.; Khan, A. On (p; q)-analogue of Bernstein operators. Appl. Math. Comput. 2015, 266, 874–882. [Google Scholar] [CrossRef]
  5. Szász, O. Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 1950, 45, 239–245. [Google Scholar] [CrossRef]
  6. Sucu, S. Dunkl analogue of Szász operators. Appl. Math. Comput. 2014, 244, 42–48. [Google Scholar] [CrossRef]
  7. Cheikh, B.; Gaied, Y.; Zaghouani, M. A q-Dunkl-classical q-Hermite type polynomials. Georgian Math. J. 2014, 21, 125–137. [Google Scholar]
  8. İçöz, G.; Çekim, B. Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2015, 2015, 284. [Google Scholar] [CrossRef]
  9. Acar, T.; Aral, A.; Mohiuddine, S.A. On Kantorovich modification of (p; q)-Baskakov operators. J. Inequal. Appl. 2016, 2016, 98. [Google Scholar] [CrossRef]
  10. Acar, T.; Aral, A.; Mohiuddine, S.A. On Kantorovich modification of (p; q)-Bernstein operators. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 1459–1464. [Google Scholar] [CrossRef]
  11. Acar, T.; Mursaleen, M.; Mohiuddine, S.A. Stancu type (p; q)-Szász-Mirakyan-Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 2018, 67, 116–128. [Google Scholar]
  12. Araci, S.; Duran, U.; Acikgöz, M.; Srivastava, H.M. A certain (p; q)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 2016, 301. [Google Scholar] [CrossRef]
  13. Kadak, U. On weighted statistical convergence based on (p; q)-integers and related approyimation theorems for functions of two variables. J. Math. Anal. Appl. 2016, 443, 752–764. [Google Scholar] [CrossRef]
  14. Kadak, U. Weighted statistical convergence based on generalized difference operator involving (p; q)-Gamma function and its applications to approyimation theorems. J. Math. Anal. Appl. 2017, 448, 1633–1650. [Google Scholar] [CrossRef]
  15. Kadak, U.; Mishra, V.N.; Pandey, S. Chlodowsky type generalization of (p; q)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Eyactas Fís. Nat. Ser. A Mat. 2018, 112, 1443–1462. [Google Scholar] [CrossRef]
  16. Mursaleen, M.; Nasiruzzaman, M.; Khan, A.; Ansari, K.J. Some approyimation results on Bleimann-Butzer-Hahn operators defined by (p; q)-integers. Filomat 2016, 30, 639–648. [Google Scholar] [CrossRef]
  17. Mursaleen, M.; Nasiruzzaman, M.; Ashirbayev, N.; Abzhapbarov, A. Higher order generalization of Bernstein type operators defined by (p; q)-integers. J. Comput. Anal. Appl. 2018, 25, 817–829. [Google Scholar]
  18. Milovanovic, G.V.; Mursaleen, M.; Nasiruzzaman, M. Modified Stancu type Dunkl generalization of Szász–Kantorovich operators. Rev. R. Acad. Cienc. Eyactas Fís. Nat. Ser. A Mat. 2018, 112, 135–151. [Google Scholar] [CrossRef]
  19. Mishra, V.N.; Mursaleen, M.; Pandey, S.; Alotaibi, A. Approyimation properties of Chlodowsky variant of (p; q)-Bernstein-Stancu-Schurer operators. J. Inequal. Appl. 2017, 2017, 176. [Google Scholar] [CrossRef] [PubMed]
  20. Mishra, V.N.; Pandey, S. On (p; q)-Baskakov-Durrmeyer-Stancu operators. Adv. Appl. Clifford Algebras 2017, 27, 1633–1646. [Google Scholar] [CrossRef]
  21. Mursaleen, M.; Nasiruzzaman, M.; Alotaibi, A. On modified Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2017, 2017, 38. [Google Scholar] [CrossRef] [PubMed]
  22. Mursaleen, M.; Khan, A.; Srivastava, H.M.; Nisar, K.S. Operators constructed by means of q-Lagrange polynomials and A-statistical approyimation. Appl. Math. Comput. 2013, 219, 6911–6918. [Google Scholar]
  23. Rao, N.; Wafi, A.; Acu, A.M. q -Szász-Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory 2018. [Google Scholar] [CrossRef]
  24. Srivastava, H.M.; Mursaleen, M.; Alotaibi, A.M.; Nasiruzzaman, M.; Al-Abied, A. Some approyimation results involving the q-Szasz-Mirakjan-Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 2017, 40, 5437–5452. [Google Scholar] [CrossRef]
  25. Ansari, K.J.; Ahmad, I.; Mursaleen, M.; Hussain, I. On some statistical approyimation by (p; q)-Bleimann, Butzer and Hahn operators. Symmetry 2018, 10, 731. [Google Scholar] [CrossRef]
  26. Jebreen, H.B.; Mursaleen, M.; Naaz, A. Approyimation by quaternion (p; q)-Bernstein polynomials and Voronovskaja type result on compact disk. Adv. Differ. Equ. 2018, 2018, 448. [Google Scholar] [CrossRef]
  27. Mursaleen, M.; Naaz, A.; Khan, A. Improved approyimation and error estimations by King type (p; q)-Szasz-Mirakjan Kantorovich operators. Appl. Math. Comput. 2019, 348, 175–185. [Google Scholar]
  28. Alotaibi, A.; Nasiruzzaman, M.; Mursaleen, M. A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, 2018, 287. [Google Scholar] [CrossRef]
  29. Içōz, G.; Çekim, B. Stancu type generalization of Dunkl analogue of Szász-Kamtrovich operators. Math. Methods Appl. Sci. 2016, 39, 1803–1810. [Google Scholar] [CrossRef]
  30. Mursaleen, M.; Alotaibi, A.; Ansari, K.J. On a Kantorovich Variant of (p; q)-Szász-Mirakjan operators. J. Funct. Spaces 2016. [Google Scholar] [CrossRef]
  31. Korovkin, P.P. On convergence of linear operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 1953, 90, 961–964. [Google Scholar]
  32. Peetre, J. A Theory of Interpolation of Normed Spaces; Noteas de Mathematica; Instituto de Mathemática Pura e Applicada, Conselho Nacional de Pesquidas: Rio de Janeiro, Brazil, 1968; Volume 39. [Google Scholar]
  33. De Sole, A.; Kac, V.G. On integral representations of q- gamma and q- beta functions. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Appl. 2005, 16, 11–29. [Google Scholar]

Share and Cite

MDPI and ACS Style

Nasiruzzaman, M.; Mukheimer, A.; Mursaleen, M. A Dunkl–Type Generalization of Szász–Kantorovich Operators via Post–Quantum Calculus. Symmetry 2019, 11, 232. https://doi.org/10.3390/sym11020232

AMA Style

Nasiruzzaman M, Mukheimer A, Mursaleen M. A Dunkl–Type Generalization of Szász–Kantorovich Operators via Post–Quantum Calculus. Symmetry. 2019; 11(2):232. https://doi.org/10.3390/sym11020232

Chicago/Turabian Style

Nasiruzzaman, Md., Aiman Mukheimer, and M. Mursaleen. 2019. "A Dunkl–Type Generalization of Szász–Kantorovich Operators via Post–Quantum Calculus" Symmetry 11, no. 2: 232. https://doi.org/10.3390/sym11020232

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop