A Dunkl–Type Generalization of Szász–Kantorovich Operators via Post–Quantum Calculus
Abstract
:1. Introduction and Preliminaries
2. New Operators and Estimations of Moments
3. Main Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bernstein, S.N. Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math. Kharkow 1912, 2, 1–2. [Google Scholar]
- Lupaş, A. A q-analogue of the Bernstein operator. Univ. Cluj-Napoca Semin. Numer. Stat. Calculus 1987, 9, 85–92. [Google Scholar]
- Phillips, G.M. Bernstein polynomials based on the q- integers. The heritage of P.L. Chebyshev, A Festschrift in honor of the 70th-birthday of Professor T. J. Rivlin. Ann. Numer. Math. 1997, 4, 511–518. [Google Scholar]
- Mursaleen, M.; Ansari, K.J.; Khan, A. On (p; q)-analogue of Bernstein operators. Appl. Math. Comput. 2015, 266, 874–882. [Google Scholar] [CrossRef]
- Szász, O. Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 1950, 45, 239–245. [Google Scholar] [CrossRef]
- Sucu, S. Dunkl analogue of Szász operators. Appl. Math. Comput. 2014, 244, 42–48. [Google Scholar] [CrossRef]
- Cheikh, B.; Gaied, Y.; Zaghouani, M. A q-Dunkl-classical q-Hermite type polynomials. Georgian Math. J. 2014, 21, 125–137. [Google Scholar]
- İçöz, G.; Çekim, B. Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2015, 2015, 284. [Google Scholar] [CrossRef]
- Acar, T.; Aral, A.; Mohiuddine, S.A. On Kantorovich modification of (p; q)-Baskakov operators. J. Inequal. Appl. 2016, 2016, 98. [Google Scholar] [CrossRef]
- Acar, T.; Aral, A.; Mohiuddine, S.A. On Kantorovich modification of (p; q)-Bernstein operators. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 1459–1464. [Google Scholar] [CrossRef]
- Acar, T.; Mursaleen, M.; Mohiuddine, S.A. Stancu type (p; q)-Szász-Mirakyan-Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 2018, 67, 116–128. [Google Scholar]
- Araci, S.; Duran, U.; Acikgöz, M.; Srivastava, H.M. A certain (p; q)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 2016, 301. [Google Scholar] [CrossRef]
- Kadak, U. On weighted statistical convergence based on (p; q)-integers and related approyimation theorems for functions of two variables. J. Math. Anal. Appl. 2016, 443, 752–764. [Google Scholar] [CrossRef]
- Kadak, U. Weighted statistical convergence based on generalized difference operator involving (p; q)-Gamma function and its applications to approyimation theorems. J. Math. Anal. Appl. 2017, 448, 1633–1650. [Google Scholar] [CrossRef]
- Kadak, U.; Mishra, V.N.; Pandey, S. Chlodowsky type generalization of (p; q)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Eyactas Fís. Nat. Ser. A Mat. 2018, 112, 1443–1462. [Google Scholar] [CrossRef]
- Mursaleen, M.; Nasiruzzaman, M.; Khan, A.; Ansari, K.J. Some approyimation results on Bleimann-Butzer-Hahn operators defined by (p; q)-integers. Filomat 2016, 30, 639–648. [Google Scholar] [CrossRef]
- Mursaleen, M.; Nasiruzzaman, M.; Ashirbayev, N.; Abzhapbarov, A. Higher order generalization of Bernstein type operators defined by (p; q)-integers. J. Comput. Anal. Appl. 2018, 25, 817–829. [Google Scholar]
- Milovanovic, G.V.; Mursaleen, M.; Nasiruzzaman, M. Modified Stancu type Dunkl generalization of Szász–Kantorovich operators. Rev. R. Acad. Cienc. Eyactas Fís. Nat. Ser. A Mat. 2018, 112, 135–151. [Google Scholar] [CrossRef]
- Mishra, V.N.; Mursaleen, M.; Pandey, S.; Alotaibi, A. Approyimation properties of Chlodowsky variant of (p; q)-Bernstein-Stancu-Schurer operators. J. Inequal. Appl. 2017, 2017, 176. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.N.; Pandey, S. On (p; q)-Baskakov-Durrmeyer-Stancu operators. Adv. Appl. Clifford Algebras 2017, 27, 1633–1646. [Google Scholar] [CrossRef]
- Mursaleen, M.; Nasiruzzaman, M.; Alotaibi, A. On modified Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2017, 2017, 38. [Google Scholar] [CrossRef] [PubMed]
- Mursaleen, M.; Khan, A.; Srivastava, H.M.; Nisar, K.S. Operators constructed by means of q-Lagrange polynomials and A-statistical approyimation. Appl. Math. Comput. 2013, 219, 6911–6918. [Google Scholar]
- Rao, N.; Wafi, A.; Acu, A.M. q -Szász-Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory 2018. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mursaleen, M.; Alotaibi, A.M.; Nasiruzzaman, M.; Al-Abied, A. Some approyimation results involving the q-Szasz-Mirakjan-Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 2017, 40, 5437–5452. [Google Scholar] [CrossRef]
- Ansari, K.J.; Ahmad, I.; Mursaleen, M.; Hussain, I. On some statistical approyimation by (p; q)-Bleimann, Butzer and Hahn operators. Symmetry 2018, 10, 731. [Google Scholar] [CrossRef]
- Jebreen, H.B.; Mursaleen, M.; Naaz, A. Approyimation by quaternion (p; q)-Bernstein polynomials and Voronovskaja type result on compact disk. Adv. Differ. Equ. 2018, 2018, 448. [Google Scholar] [CrossRef]
- Mursaleen, M.; Naaz, A.; Khan, A. Improved approyimation and error estimations by King type (p; q)-Szasz-Mirakjan Kantorovich operators. Appl. Math. Comput. 2019, 348, 175–185. [Google Scholar]
- Alotaibi, A.; Nasiruzzaman, M.; Mursaleen, M. A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, 2018, 287. [Google Scholar] [CrossRef]
- Içōz, G.; Çekim, B. Stancu type generalization of Dunkl analogue of Szász-Kamtrovich operators. Math. Methods Appl. Sci. 2016, 39, 1803–1810. [Google Scholar] [CrossRef]
- Mursaleen, M.; Alotaibi, A.; Ansari, K.J. On a Kantorovich Variant of (p; q)-Szász-Mirakjan operators. J. Funct. Spaces 2016. [Google Scholar] [CrossRef]
- Korovkin, P.P. On convergence of linear operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 1953, 90, 961–964. [Google Scholar]
- Peetre, J. A Theory of Interpolation of Normed Spaces; Noteas de Mathematica; Instituto de Mathemática Pura e Applicada, Conselho Nacional de Pesquidas: Rio de Janeiro, Brazil, 1968; Volume 39. [Google Scholar]
- De Sole, A.; Kac, V.G. On integral representations of q- gamma and q- beta functions. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Appl. 2005, 16, 11–29. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasiruzzaman, M.; Mukheimer, A.; Mursaleen, M. A Dunkl–Type Generalization of Szász–Kantorovich Operators via Post–Quantum Calculus. Symmetry 2019, 11, 232. https://doi.org/10.3390/sym11020232
Nasiruzzaman M, Mukheimer A, Mursaleen M. A Dunkl–Type Generalization of Szász–Kantorovich Operators via Post–Quantum Calculus. Symmetry. 2019; 11(2):232. https://doi.org/10.3390/sym11020232
Chicago/Turabian StyleNasiruzzaman, Md., Aiman Mukheimer, and M. Mursaleen. 2019. "A Dunkl–Type Generalization of Szász–Kantorovich Operators via Post–Quantum Calculus" Symmetry 11, no. 2: 232. https://doi.org/10.3390/sym11020232