Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel
Abstract
1. Introduction
2. Preliminaries and Assumptions
3. General Decay and Polynomial Decay
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cavalcanti, M.; Cavalcanti, V.N.D.; Soriano, J.A. Exponential decay for the solution of semi linear viscoelastic wave equations with localized damping. Electron. J. Differ. Equ. 2002, 2002, 1–14. [Google Scholar]
- Cavalcanti, M.; Cavalcanti, V.N.D.; Martinez, P. General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal. 2008, 68, 177–193. [Google Scholar] [CrossRef]
- Enqvist, K.; McDonald, J. Q-balls and baryogenesis in the MSSM. Phys. Lett. B 1998, 425, 309–321. [Google Scholar] [CrossRef]
- Kirchhoff, G. Vorlesungen uber Mechanik; Tauber: Leipzig, Germany, 1883. [Google Scholar]
- Gorka, P. Logarithmic quantum mechanics: Existence of the ground state. Found. Phys. Lett. 2006, 19, 591–601. [Google Scholar] [CrossRef]
- Mu, C.; Ma, J. On a system of nonlinear wave equatioins with Balakrishnan-Taylor damping. Z. Angew. Math. Phys. 2014, 65, 91–113. [Google Scholar] [CrossRef]
- Mesloub, F.; Boulaaras, S. General decay for a viscoelastic problem with not necessarily decreasing kernel. J. Appl. Math. Comput. 2018, 58, 647–665. [Google Scholar] [CrossRef]
- Ouchenane, D.; Boulaaras, S.; Mesloub, F. General decay for a class of viscoelastic problem with not necessarily decreasing kernel. Appl. Anal. 2018. [Google Scholar] [CrossRef]
- Medjden, M.; Tatar, N.E. Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel. Appl. Math. Comput. 2005, 167, 1221–1235. [Google Scholar] [CrossRef]
- Boumaza, N.; Boulaaras, S. General Decay for Kirchhoff Type in Viscoelasticity with Not Necessarily Decreasing Kernel; John Wiley & Sons, Ltd.: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Zara, A.; Tatar, N.E. Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping. Arch. Math. 2010, 46, 157–176. [Google Scholar]
- Alabau-Boussouira, F.; Cannarsa, P. A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C. R. Math. Acad. Sci. Paris Ser. I 2009, 347, 867–872. [Google Scholar] [CrossRef]
- Bass, R.W.; Zes, D. Spillover nonlinearity, and flexible structures. In Proceedings of the Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, Williamsburg, VA, USA, 11–13 July 1991; pp. 1–14. [Google Scholar]
- Bartkowski, K.; Gorka, P. One-dimensional Klein-Gordon equation with logarithmic nonlinearities. J. Phys. A 2008, 41, 355201. [Google Scholar] [CrossRef]
- Barrow, J.; Parsons, P. Inflationary models with logarithmic potentials. Phys. Rev. D 1995, 52, 5576–5587. [Google Scholar] [CrossRef]
- Cavalcanti, M.; Filho, V.N.D.; Cavalcanti, J.S.P.; Soriano, J.A. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ. Integr. Equ. 2001, 14, 85–116. [Google Scholar]
- Cavalcanti, M.; Oquendo, H.P. Frictional versus viscoelastic damping in a semi linear wave equation. SIAM J. Control Optim. 2003, 42, 1310–1324. [Google Scholar] [CrossRef]
- Nakao, M. Decay of solutions of some nonlinear evolution Equation. J. Math. Anal. Appl. 1977, 60, 542–549. [Google Scholar] [CrossRef]
- Ono, K. Global existence, decay, and blow-up of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differ. Equ. 1997, 137, 273–301. [Google Scholar] [CrossRef]
- Berrimi, S.; Messaoudi, S.A. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electron. J. Differ. Equ. 2004, 2002, 1–10. [Google Scholar]
- Tatar, N.E.; Zarai, A. Exponential stability and blow up for a problem with Balakrishnan-Taylor damping. Demonstr. Math. 2011, 44, 67–90. [Google Scholar] [CrossRef]
- Liu, W. Exponential or polynomial decay of solutions to a viscoelastic equation with nonlinear localized damping. J. Appl. Math. Comput. 2010, 32, 59–68. [Google Scholar] [CrossRef]
- Li, M.R.; Tsai, L.Y. Existence and nonexistence of global solutions of some systems of semilinear wave equations. Nonlinear Anal. 2013, 54, 1397–1415. [Google Scholar] [CrossRef]
- Zara, A.; Draifia, A.; Boulaaras, S. Blow up of solutions for a system of nonlocal singular viscoelatic equations. Appl. Anal. 2017. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulaaras, S.; Draifia, A.; Alnegga, M. Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel. Symmetry 2019, 11, 226. https://doi.org/10.3390/sym11020226
Boulaaras S, Draifia A, Alnegga M. Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel. Symmetry. 2019; 11(2):226. https://doi.org/10.3390/sym11020226
Chicago/Turabian StyleBoulaaras, Salah, Alaeddin Draifia, and Mohammad Alnegga. 2019. "Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel" Symmetry 11, no. 2: 226. https://doi.org/10.3390/sym11020226
APA StyleBoulaaras, S., Draifia, A., & Alnegga, M. (2019). Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel. Symmetry, 11(2), 226. https://doi.org/10.3390/sym11020226