The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes
Abstract
:1. Introduction
2. Time Conformal Plane Symmetric Spacetime
3. Second-Order Approximate Noether Symmetry Equation
4. Second-Order Approximate Noether Symmetries and Conservation Laws along with Second Order Time Conformal Plane Symmetric Spacetimes
4.1. Five Noether Symmetries and the Corresponding Conservation Laws
4.2. Six Noether Symmetries and the Corresponding Conservation Laws
5. Conclusions and Observations
- Second order approximation appears in the classes of five and six Noether symmetries for the perturbed Lagrangian of plane symmetric spacetimes, which are given in Section 4.1 and Section 4.2, respectively.
- Flat spacetimes do not admit second order approximation (second-order perturbation) as well as first-order approximation/first-order perturbation); for example, Minkowski spacetime does not admit approximate Noether symmetries. Therefore, the conservation laws do not hold in general relativity globally and they hold in special relativity.
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Press, W.H.; Thorne, K.S. Gravitational-wave astronomy. Ann. Rev. Astron. Astrophys. 1972, 10, 335–374. [Google Scholar] [CrossRef]
- Price, R.H.; Thorne, K.S. Nonradial pulsation of general relativistic stellar models. II. Properties of the gravitational waves. Astrophys. J. 1969, 155, 163. [Google Scholar] [CrossRef]
- Thorne, K.S. Gravitational radiation damping. Phys. Rev. Lett. 1968, 21, 320. [Google Scholar] [CrossRef]
- Thorne, K.S.; Hawking, S.W.; Penrose, R. Sources of gravitational waves. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1979, 368, 9. [Google Scholar] [CrossRef]
- Thorne, K.S. Gravitational-wave research: Current status and future prospects. Rev. Mod. Phys. 1980, 52, 285. [Google Scholar] [CrossRef]
- Poincare, H. The principles of mathematical physics. Monist 1905, 15, 1–24. [Google Scholar]
- Einstein, A. The foundation of the general theory of relativity. Ann. Phys. 1916, 14, 769–822. [Google Scholar] [CrossRef]
- Einstein, A.; Rosen, N. On gravitational waves. J. Frankl. Inst. 1937, 223, 43. [Google Scholar] [CrossRef]
- Ruthen, R. Catching the wave. Sci. Am. 1992, 266, 90–101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Jawahar, S.; Lockerbie, N.A.; Tokmakov, K.V. LIGO Scientific Collaboration and Virgo Collaboration. Phys. Rev. Lett. 2016, 116, 241102. [Google Scholar] [CrossRef]
- The LIGO Scientific Collaboration and the Virgo Collaboration. An improved analysis of GW150914 using a fully spin-precessing waveform model. arXiv, 2016; arXiv:1606.01210. [Google Scholar]
- Nowakowiski, M.; Arraut, I. The fate of a gravitational wave in de Sitter spacetime. Acta Phys. Polon. 2010, B41, 911–925. [Google Scholar]
- Arraut, I. About the propagation of the gravitational wave in an asymptotically de Sitter spacetime, comparing two point of view. Mod. Phys. Lett. A 2013, 28, 13500139. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, L.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1980. [Google Scholar]
- Taub, A.H. Empty spacetimes admiting a three parameter group of motions. Ann. Math. 1951, 53, 472–490. [Google Scholar] [CrossRef]
- Noether, E. Invariante Variations probleme. Nachr. Koing. Gesell. Wissen. Gottinngen Math. Phys. 1918, 2, 235. [Google Scholar]
- Ali, F.; Feroze, T. Classification of plane symmetric static spacetimes according to their Noether’s symmetries. Int. J. Theor. Phys. 2013, 52, 3329. [Google Scholar] [CrossRef]
- Ali, F.; Feroze, T.; Ali, S. Complete classification of spherically symmetric static spacetime via Noether symmetries. Theor. Math. Phys. 2015, 184, 973. [Google Scholar] [CrossRef]
- Ali, F.; Feroze, T. Approximate Noether symmetries from geodetic lagrangian for plane symmetric spacetimes. Int. J. Theor. Phy. 2015, 12, 1550124. [Google Scholar] [CrossRef]
- Ali, F.; Feroze, T. Complete classification of cylindrically symmetric static spacetime and the corresponding conservation laws. Mathematics 2016, 4, 50. [Google Scholar] [CrossRef]
- Jawad, A.; Ali, F.; Umair, S.M.; Abbas, G. Dynamics of particles around time conformal Schwarzschild black hole. Eur. Phys. J. C 2016, 76, 586. [Google Scholar] [CrossRef]
- Ali, F.; Mashwani, W.K.; Jan, M.A. Correction to the conservation laws in plane symmetric gravitational wave-like spacetimes. Mod. Phys. Lett. A 2018, 33, 1850123. [Google Scholar] [CrossRef]
- Kramer, D.; Stephani, H.; MacCallum, M.A.H.; Herlt, E. Exact Solution of Einstein Field Equations; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Iso, S.; Umetsu, H.; Wilczek, F. Anomalies, Hawking radiations, and regularity in rotating black holes. Phys. Rev. D 2006, 74, 044017. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Ali, F.; Saboor, A.; Ghafar, M.S.; Khan, A.S. The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes. Symmetry 2019, 11, 220. https://doi.org/10.3390/sym11020220
Ali M, Ali F, Saboor A, Ghafar MS, Khan AS. The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes. Symmetry. 2019; 11(2):220. https://doi.org/10.3390/sym11020220
Chicago/Turabian StyleAli, Mutahir, Farhad Ali, Abdus Saboor, M. Saad Ghafar, and Amir Sultan Khan. 2019. "The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes" Symmetry 11, no. 2: 220. https://doi.org/10.3390/sym11020220
APA StyleAli, M., Ali, F., Saboor, A., Ghafar, M. S., & Khan, A. S. (2019). The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes. Symmetry, 11(2), 220. https://doi.org/10.3390/sym11020220