# Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

^{1}

^{2}

^{3}

^{4}

^{*}

- China (51)
- Turkey (15)
- India (11)
- Pakistan (8)
- Malaysia (6)
- USA (3)
- Romania (3)
- Egypt (3)
- Morocco (3)
- Nigeria (3)
- Iran (2)
- Korea (2)
- Denmark (1)
- Saudi Arabia (1)

## Conflicts of Interest

## References

- Neutrosophy. Available online: http://fs.gallup.unm.edu/neutrosophy.htm (accessed on 30 January 2019).
- Neutrosophic Triplet Structures. Available online: http://fs.gallup.unm.edu/NeutrosophicTriplets.htm (accessed on 30 January 2019).
- Neutrosophic Duplet Structures. Available online: http://fs.gallup.unm.edu/NeutrosophicDuplets.htm (accessed on 30 January 2019).
- Neutrosophic Multiset Structures. Available online: http://fs.gallup.unm.edu/NeutrosophicMultisets.htm (accessed on 30 January 2019).
- Çevik, A.; Topal, S.; Smarandache, F. Neutrosophic Logic Based Quantum Computing. Symmetry
**2018**, 10, 656. [Google Scholar] [CrossRef] - Çevik, A.; Topal, S.; Smarandache, F. Neutrosophic Computability and Enumeration. Symmetry
**2018**, 10, 643. [Google Scholar] [CrossRef] - Xu, L.; Li, X.; Pang, C.; Guo, Y. Simplified Neutrosophic Sets Based on Interval Dependent Degree for Multi-Criteria Group Decision-Making Problems. Symmetry
**2018**, 10, 640. [Google Scholar] - Abu Qamar, M.; Hassan, N. Generalized Q-Neutrosophic Soft Expert Set for Decision under Uncertainty. Symmetry
**2018**, 10, 621. [Google Scholar] [CrossRef] - Gulistan, M.; Nawaz, S.; Hassan, N. Neutrosophic Triplet Non-Associative Semihypergroups with Application. Symmetry
**2018**, 10, 613. [Google Scholar] [CrossRef] - Wu, X.; Qian, J.; Peng, J.; Xue, C. A Multi-Criteria Group Decision-Making Method with Possibility Degree and Power Aggregation Operators of Single Trapezoidal Neutrosophic Numbers. Symmetry
**2018**, 10, 590. [Google Scholar] [CrossRef] - Bo, C.; Zhang, X.; Shao, S.; Smarandache, F. New Multigranulation Neutrosophic Rough Set with Applications. Symmetry
**2018**, 10, 578. [Google Scholar] [CrossRef] - Ye, J.; Fang, Z.; Cui, W. Vector Similarity Measures of Q-Linguistic Neutrosophic Variable Sets and Their Multi-Attribute Decision Making Method. Symmetry
**2018**, 10, 531. [Google Scholar] [CrossRef] - Wang, J.; Wei, G.; Lu, M. An Extended VIKOR Method for Multiple Criteria Group Decision Making with Triangular Fuzzy Neutrosophic Numbers. Symmetry
**2018**, 10, 497. [Google Scholar] [CrossRef] - Wang, J.; Wei, G.; Lu, M. TODIM Method for Multiple Attribute Group Decision Making under 2-Tuple Linguistic Neutrosophic Environment. Symmetry
**2018**, 10, 486. [Google Scholar] [CrossRef] - Khan, Q.; Liu, P.; Mahmood, T.; Smarandache, F.; Ullah, K. Some Interval Neutrosophic Dombi Power Bonferroni Mean Operators and Their Application in Multi–Attribute Decision–Making. Symmetry
**2018**, 10, 459. [Google Scholar] [CrossRef] - Khan, Q.; Hassan, N.; Mahmood, T. Neutrosophic Cubic Power Muirhead Mean Operators with Uncertain Data for Multi-Attribute Decision-Making. Symmetry
**2018**, 10, 444. [Google Scholar] [CrossRef] - Uluçay, V.; Şahin, M.; Hassan, N. Generalized Neutrosophic Soft Expert Set for Multiple-Criteria Decision-Making. Symmetry
**2018**, 10, 437. [Google Scholar] [CrossRef] - Taş, F.; Topal, S.; Smarandache, F. Clustering Neutrosophic Data Sets and Neutrosophic Valued Metric Spaces. Symmetry
**2018**, 10, 430. [Google Scholar] [CrossRef] - Jaíyéọlá, T.G.; Ilojide, E.; Olatinwo, M.O.; Smarandache, F. On the Classification of Bol-Moufang Type of Some Varieties of Quasi Neutrosophic Triplet Loop (Fenyves BCI-Algebras). Symmetry
**2018**, 10, 427. [Google Scholar] [CrossRef] - Shao, S.; Zhang, X.; Li, Y.; Bo, C. Probabilistic Single-Valued (Interval) Neutrosophic Hesitant Fuzzy Set and Its Application in Multi-Attribute Decision Making. Symmetry
**2018**, 10, 419. [Google Scholar] [CrossRef] - Liang, R.-X.; Jiang, Z.-B.; Wang, J.-Q. A Linguistic Neutrosophic Multi-Criteria Group Decision-Making Method to University Human Resource Management. Symmetry
**2018**, 10, 364. [Google Scholar] [CrossRef] - Borzooei, R.A.; Zhang, X.; Smarandache, F.; Jun, Y.B. Commutative Generalized Neutrosophic Ideals in BCK-Algebras. Symmetry
**2018**, 10, 350. [Google Scholar] [CrossRef] - Jiang, W.; Zhong, Y.; Deng, X. A Neutrosophic Set Based Fault Diagnosis Method Based on Multi-Stage Fault Template Data. Symmetry
**2018**, 10, 346. [Google Scholar] [CrossRef] - Kandasamy, W.B.V.; Kandasamy, I.; Smarandache, F. Neutrosophic Duplets of {Zpn,×} and {Zpq,×} and Their Properties. Symmetry
**2018**, 10, 345. [Google Scholar] [CrossRef] - Hashim, R.M.; Gulistan, M.; Smarandache, F. Applications of Neutrosophic Bipolar Fuzzy Sets in HOPE Foundation for Planning to Build a Children Hospital with Different Types of Similarity Measures. Symmetry
**2018**, 10, 331. [Google Scholar] [CrossRef] - Chakraborty, A.; Mondal, S.P.; Ahmadian, A.; Senu, N.; Alam, S.; Salahshour, S. Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications. Symmetry
**2018**, 10, 327. [Google Scholar] [CrossRef] - Çelik, M.; Shalla, M.M.; Olgun, N. Fundamental Homomorphism Theorems for Neutrosophic Extended Triplet Groups. Symmetry
**2018**, 10, 321. [Google Scholar] [CrossRef] - Bo, C.; Zhang, X.; Shao, S.; Smarandache, F. Multi-Granulation Neutrosophic Rough Sets on a Single Domain and Dual Domains with Applications. Symmetry
**2018**, 10, 296. [Google Scholar] [CrossRef] - Zhang, X.; Hu, Q.; Smarandache, F.; An, X. On Neutrosophic Triplet Groups: Basic Properties, NT-Subgroups, and Some Notes. Symmetry
**2018**, 10, 289. [Google Scholar] [CrossRef] - Garg, H.; Nancy. Multi-Criteria Decision-Making Method Based on Prioritized Muirhead Mean Aggregation Operator under Neutrosophic Set Environment. Symmetry
**2018**, 10, 280. [Google Scholar] [CrossRef] - Guan, H.; He, J.; Zhao, A.; Dai, Z.; Guan, S. A Forecasting Model Based on Multi-Valued Neutrosophic Sets and Two-Factor, Third-Order Fuzzy Fluctuation Logical Relationships. Symmetry
**2018**, 10, 245. [Google Scholar] [CrossRef] - Zhang, X.; Wu, X.; Smarandache, F.; Hu, M. Left (Right)-Quasi Neutrosophic Triplet Loops (Groups) and Generalized BE-Algebras. Symmetry
**2018**, 10, 241. [Google Scholar] [CrossRef] - Şahin, M.; Kargın, A.; Çoban, M.A. Fixed Point Theorem for Neutrosophic Triplet Partial Metric Space. Symmetry
**2018**, 10, 240. [Google Scholar] [CrossRef] - Selvachandran, G.; Quek, S.G.; Smarandache, F.; Broumi, S. An Extended Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) with Maximizing Deviation Method Based on Integrated Weight Measure for Single-Valued Neutrosophic Sets. Symmetry
**2018**, 10, 236. [Google Scholar] [CrossRef] - Abdel-Basset, M.; Mohamed, M.; Smarandache, F. A Hybrid Neutrosophic Group ANP-TOPSIS Framework for Supplier Selection Problems. Symmetry
**2018**, 10, 226. [Google Scholar] [CrossRef] - Mani, P.; Muthusamy, K.; Jafari, S.; Smarandache, F.; Ramalingam, U. Decision-Making via Neutrosophic Support Soft Topological Spaces. Symmetry
**2018**, 10, 217. [Google Scholar] [CrossRef] - Tu, A.; Ye, J.; Wang, B. Multiple Attribute Decision-Making Method Using Similarity Measures of Neutrosophic Cubic Sets. Symmetry
**2018**, 10, 215. [Google Scholar] [CrossRef] - Zhang, C.; Li, D.; Broumi, S.; Sangaiah, A.K. Medical Diagnosis Based on Single-Valued Neutrosophic Probabilistic Rough Multisets over Two Universes. Symmetry
**2018**, 10, 213. [Google Scholar] [CrossRef] - Jaíyéolá, T.G.; Smarandache, F. Some Results on Neutrosophic Triplet Group and Their Applications. Symmetry
**2018**, 10, 202. [Google Scholar] [CrossRef] - Gulistan, M.; Yaqoob, N.; Rashid, Z.; Smarandache, F.; Wahab, H.A. A Study on Neutrosophic Cubic Graphs with Real Life Applications in Industries. Symmetry
**2018**, 10, 203. [Google Scholar] [CrossRef] - Gal, I.-A.; Bucur, D.; Vladareanu, L. DSmT Decision-Making Algorithms for Finding Grasping Configurations of Robot Dexterous Hands. Symmetry
**2018**, 10, 198. [Google Scholar] [CrossRef] - Wang, J.-Q.; Tian, C.-Q.; Zhang, X.; Zhang, H.-Y.; Wang, T.-L. Multi-Criteria Decision-Making Method Based on Simplified Neutrosophic Linguistic Informatiosn with Cloud Model. Symmetry
**2018**, 10, 197. [Google Scholar] [CrossRef] - Tan, R.; Zhang, W.; Chen, S. Exponential Aggregation Operator of Interval Neutrosophic Numbers and Its Application in Typhoon Disaster Evaluation. Symmetry
**2018**, 10, 196. [Google Scholar] [CrossRef] - WB, V.K.; Kandasamy, I.; Smarandache, F. A Classical Group of Neutrosophic Triplet Groups Using {Z2p, ×}. Symmetry
**2018**, 10, 194. [Google Scholar] - Quek, S.G.; Broumi, S.; Selvachandran, G.; Bakali, A.; Talea, M.; Smarandache, F. Some Results on the Graph Theory for Complex Neutrosophic Sets. Symmetry
**2018**, 10, 190. [Google Scholar] [CrossRef] - Zhang, X.; Bo, C.; Smarandache, F.; Park, C. New Operations of Totally Dependent-Neutrosophic Sets and Totally Dependent-Neutrosophic Soft Sets. Symmetry
**2018**, 10, 187. [Google Scholar] [CrossRef] - Turhan, M.; Şengür, D.; Karabatak, S.; Guo, Y.; Smarandache, F. Neutrosophic Weighted Support Vector Machines for the Determination of School Administrators Who Attended an Action Learning Course Based on Their Conflict-Handling Styles. Symmetry
**2018**, 10, 176. [Google Scholar] [CrossRef] - Shao, S.; Zhang, X.; Bo, C.; Smarandache, F. Neutrosophic Hesitant Fuzzy Subalgebras and Filters in Pseudo-BCI Algebras. Symmetry
**2018**, 10, 174. [Google Scholar] [CrossRef] - Wang, Y.; Liu, P. Linguistic Neutrosophic Generalized Partitioned Bonferroni Mean Operators and Their Application to Multi-Attribute Group Decision Making. Symmetry
**2018**, 10, 160. [Google Scholar] [CrossRef] - Fan, C.; Fan, E.; Ye, J. The Cosine Measure of Single-Valued Neutrosophic Multisets for Multiple Attribute Decision-Making. Symmetry
**2018**, 10, 154. [Google Scholar] [CrossRef] - Feng, J.; Li, M.; Li, Y. Study of Decision Framework of Shopping Mall Photovoltaic Plan Selection Based on DEMATEL and ELECTRE III with Symmetry under Neutrosophic Set Environment. Symmetry
**2018**, 10, 150. [Google Scholar] [CrossRef] - Bal, M.; Shalla, M.M.; Olgun, N. Neutrosophic Triplet Cosets and Quotient Groups. Symmetry
**2018**, 10, 126. [Google Scholar] [CrossRef] - Guo, Y.; Ashour, A.S.; Smarandache, F. A Novel Skin Lesion Detection Approach Using Neutrosophic Clustering and Adaptive Region Growing in Dermoscopy Images. Symmetry
**2018**, 10, 119. [Google Scholar] [CrossRef] - Abdel-Basset, M.; Mohamed, M.; Smarandache, F. An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making. Symmetry
**2018**, 10, 116. [Google Scholar] [CrossRef] - Abdel-Basset, M.; Mohamed, M.; Smarandache, F.; Chang, V. Neutrosophic Association Rule Mining Algorithm for Big Data Analysis. Symmetry
**2018**, 10, 106. [Google Scholar] [CrossRef] - Li, X.; Zhang, X.; Park, C. Generalized Interval Neutrosophic Choquet Aggregation Operators and Their Applications. Symmetry
**2018**, 10, 85. [Google Scholar] [CrossRef] - Smarandache, F. Neutrosophy. Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Smarandache, F. A generalization of the intuitionistic fuzzy set. Int. J. Pure Appl. Math.
**2005**, 24, 287–297. [Google Scholar] - Smarandache, F. Neutrosophic Quantum Computer. Intern. J. Fuzzy Math. Arch.
**2016**, 10, 139–145. [Google Scholar] - Wang, H.B.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single Valued Neutrosophic Sets. Available online: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=65C7521427055BA55C102843C01F668C?doi=10.1.1.640.7072&rep=rep1&type=pdf (accessed on 30 January 2019).
- Biswas, P.; Pramanik, S.; Giri, B.C. Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. Neutrosophic Sets Syst.
**2016**, 12, 127–138. [Google Scholar] - Wu, Q.; Wu, P.; Zhou, L.; Chen, H.; Guan, X. Some new Hamacher aggregation operators under single-valued neutrosophic 2-tuple linguistic environment and their applications to multi-attribute group decision making. Comput. Ind. Eng.
**2018**, 116, 144–162. [Google Scholar] [CrossRef] - Wang, H.; Madiraju, P. Interval-neutrosophic Sets. J. Mech.
**2004**, 1, 274–277. [Google Scholar] - Ali, M.; Deli, I.; Smarandache, F. The theory of neutrosophic cubic sets and their applications in pattern recognition. J. Intell. Fuzzy Syst.
**2018**, 30, 1957–1963. [Google Scholar] [CrossRef] - Mondal, K.; Pramanik, S.; Giri, B.C. Role of Neutrosophic Logic in Data Mining. New Trends Neutrosophic Theory Appl.
**2016**, 1, 15. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Smarandache, F.; Zhang, X.; Ali, M.
Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets. *Symmetry* **2019**, *11*, 171.
https://doi.org/10.3390/sym11020171

**AMA Style**

Smarandache F, Zhang X, Ali M.
Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets. *Symmetry*. 2019; 11(2):171.
https://doi.org/10.3390/sym11020171

**Chicago/Turabian Style**

Smarandache, Florentin, Xiaohong Zhang, and Mumtaz Ali.
2019. "Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets" *Symmetry* 11, no. 2: 171.
https://doi.org/10.3390/sym11020171