# Supersymmetric NJL-Type Model for a Real Superfield Composite

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Model Lagrangian

## 3. NJL Analysis and the Gap Equations

## 4. Solutions to the Gap Equation

## 5. Kinetic and Mass Terms for the Composite Fields

## 6. Discussions and Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I. Phys. Rev.
**1961**, 122, 345–358. [Google Scholar] [CrossRef] [Green Version] - Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II. Phys. Rev.
**1961**, 124, 246–254. [Google Scholar] [CrossRef] - Nambu, Y. Bootstrap Symmetry Breaking in Electroweak Unification. In Enrico Fermi Institute Report; Enrico Fermi Institute: Chicago, IL, USA, 1989. [Google Scholar]
- Miransky, V.A.; Tanabashi, M.; Yamawaki, K. Dynamical Electroweak Symmetry Breaking with Large Anomalous Dimension and t Quark Condensate. Phys. Lett. B
**1989**, 221, 177–183. [Google Scholar] [CrossRef] - Miransky, V.A.; Tanabashi, M.; Yamawaki, K. Is the t Quark Responsible for the Mass of W and Z Bosons? Mod. Phys. Lett. A
**1989**, 4, 1043–1062. [Google Scholar] [CrossRef] - Marciano, W.J. Heavy Top Quark Mass Predictions. Phys. Rev. Lett.
**1989**, 62, 2793–2796. [Google Scholar] [CrossRef] - Marciano, W.J. Dynamical Symmetry Breaking and the Top Quark Mass. Phys. Rev. D
**1990**, 41, 219–224. [Google Scholar] [CrossRef] - Bardeen, W.A.; Hill, C.T.; Lindner, M. Minimal Dynamical Symmetry Breaking of the Standard Model. Phys. Rev. D
**1990**, 41, 1647–1689. [Google Scholar] [CrossRef] [Green Version] - Cvetic, G. Top quark condensation. Rev. Mod. Phys.
**1999**, 71, 513–574. [Google Scholar] [CrossRef] - Suzuki, M. Dynamical composite models of electroweak bosons. Phys. Rev. D
**1988**, 37, 210–236. [Google Scholar] [CrossRef] - Suzuki, M. Approximate gauge symmetry of composite vector bosons. Phys. Rev. D
**2010**, 82, 045026. [Google Scholar] [CrossRef] [Green Version] - Buchmuller, W.; Love, S.T. Chiral Symmetry and Supersymmetry in the Nambu–Jona-Lasinio Model. Nucl. Phys. B
**1982**, 204, 213–224. [Google Scholar] [CrossRef] - Buchmuller, W.; Ellwanger, U. On the Structure of Composite Goldstino Supermultiplets. Nucl. Phys. B
**1984**, 245, 237–258. [Google Scholar] [CrossRef] [Green Version] - Kong, O.C.W. Exploring An Alternative Supersymmetric Nambu-Jona-Lasinio Model. AIP Conf. Proc.
**2010**, 1200, 1101–1104. [Google Scholar] - Clark, T.E.; Love, S.T.; Bardeen, W.A. The Top Quark Mass in a Supersymmetric Standard Model with Dynamical Symmetry Breaking. Phys. Lett. B
**1990**, 237, 235–241. [Google Scholar] [CrossRef] - Carena, M.; Clark, T.E.; Wagner, C.E.M.; Bardeen, W.A.; Sasaki, K. Dynamical symmetry breaking and the top quark mass in the minimal supersymmetric standard model. Nucl. Phys. B
**1992**, 369, 33–53. [Google Scholar] [CrossRef] - Jung, D.W.; Kong, O.C.W.; Lee, J.S. Holomorphic Supersymmetric Nambu-Jona-Lasinio Model with Application to Dynamical Electroweak Symmetry Breaking. Phys. Rev. D
**2010**, 81, 031701. [Google Scholar] [CrossRef] [Green Version] - Chun, E.J.; Lukas, A. NJL breaking of supersymmetric GUTs. Nucl. Phys. B
**1993**, 409, 161–185. [Google Scholar] [CrossRef] [Green Version] - Binétruy, P.; Dudas, E.A.; Pillon, F. The vacuum structure in a supersymmetric gauged Nambu-Jona-Lasinio model. Nucl. Phys. B
**1994**, 415, 175–194. [Google Scholar] [CrossRef] [Green Version] - Dudas, E.; Papineau, C. Dual realizations of dynamical symmetry breaking. JHEP
**2006**, 11, 010. [Google Scholar] [CrossRef] - Faisel, G.; Jung, D.W.; Kong, O.C.W. Dynamical Symmetry Breaking with Four-Superfield Interactions. JHEP
**2012**, 1201, 164. [Google Scholar] [CrossRef] [Green Version] - Dai, Y.-M.; Faisel, G.; Jung, D.W.; Kong, O.C.W. Majorana versus Dirac Mass from Holomorphic Supersymmetric Nambu–Jona-Lasinio Model. Phys. Rev. D
**2013**, 87, 085033. [Google Scholar] [CrossRef] [Green Version] - Miller, R.D.C. A simple component field method for SUSY effective potential calculations. Phys. Lett. B
**1983**, 124, 59–63. [Google Scholar] [CrossRef] [Green Version] - Miller, R.D.C. A tadpole supergraph method for the evaluation of SUSY effective potentials. Nucl. Phys. B
**1983**, 228, 316–332. [Google Scholar] [CrossRef] [Green Version] - Wess, J.; Bagger, J. Supersymmetry and Supergravity; University of Princeton: Princeton, NJ, USA, 1992. [Google Scholar]
- Cheng, Y.; Faisel, G.; Fung, P.H.; Kong, O.C.W. Derivation of Effective Theories of Superfield Nambu–Jona-Lasinio Models through Path Integrals. manuscript in preparation. 2020. [Google Scholar]
- Bogoliubov, N.N. The compensation principle and the self-consistent field method. Sov. Phys. Usp.
**1959**, 2, 236–254. [Google Scholar] [CrossRef] - Arbuzov, B.A. Non-Perturbative Effective Interactions in the Standard Model; De Gruyter: Berlin, Germany, 2014; p. 58. [Google Scholar]
- Weinberg, S. Perturbative Calculations of Symmetry Breaking. Phys. Rev. D
**1973**, 7, 2887–2910. [Google Scholar] [CrossRef] - Weinberg, S. Non-Renormalization Theorems in Non-Renormalizable Theories. Phys. Rev. Lett.
**1998**, 80, 3702–3705. [Google Scholar] [CrossRef] [Green Version] - Grisaru, M.T.; Siegel, W.; Rocek, M. Improved methods for supergraphs. Nucl. Phys. B
**1979**, 159, 429–450. [Google Scholar] [CrossRef] - Shirman, Y. TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking. arXiv
**2008**, arXiv:0907.0039. [Google Scholar]

**Figure 1.**The superfield gap equation. The supersymmetric and ${\theta}^{2}{\overline{\theta}}^{2}$ component of the equation correspond to wave function renormalization and the soft mass generation, separately.

**Figure 2.**The tadpole diagrams both in renormalized superfields and component fields: (

**a**) the tadpole supergraph, (

**b**) the D-tadpole diagram, (

**c**) the C-tadpole diagrams. Note that there is no N-tadpole diagram, as we discuss only the development of $\u2329D\u232a$.

**Figure 3.**Numerical plot of nontrivial solutions to the soft mass gap equation. Coupling parameter $G=\frac{{g}^{2}{N}_{c}{\Lambda}^{2}}{16{\pi}^{2}}$ is plotted against the normalized soft mass parameter $s=\frac{{\tilde{m}}^{2}}{{\Lambda}^{2}}$.

**Figure 4.**(

**a**) The supergraph contributing to two-point function for U. (

**b**) The (component) diagram contributing to the fermion mass matrix.

**Figure 5.**The chirality conserving self-energy diagrams for $\chi $ and $\lambda $, which make $\chi $ and $\lambda $ dynamic.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cheng, Y.; Dai, Y.-M.; Faisel, G.; Kong, O.C.W.
Supersymmetric NJL-Type Model for a Real Superfield Composite. *Symmetry* **2019**, *11*, 1507.
https://doi.org/10.3390/sym11121507

**AMA Style**

Cheng Y, Dai Y-M, Faisel G, Kong OCW.
Supersymmetric NJL-Type Model for a Real Superfield Composite. *Symmetry*. 2019; 11(12):1507.
https://doi.org/10.3390/sym11121507

**Chicago/Turabian Style**

Cheng, Yifan, Yan-Min Dai, Gaber Faisel, and Otto C. W. Kong.
2019. "Supersymmetric NJL-Type Model for a Real Superfield Composite" *Symmetry* 11, no. 12: 1507.
https://doi.org/10.3390/sym11121507