Some Integral Inequalities for h-Godunova-Levin Preinvexity
Abstract
:1. Introduction
2. The h-Godunova–Levin Functions and Their Properties
3. New Hermite–Hadamard Inequality for h-Godunova–Levin Convex Function
4. Hermite–Hadamard Inequalities for h-Godunova–Levin Preinvex Function
5. Applications
5.1. Applications to Numerical Integration
5.2. Applications to Special Means
- 1.
- The arithmetic mean:; with
- 2.
- The generalized log-mean:, .
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S. Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 1992, 167, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, A.; Kılıçman, A. New refinements of the Hadamard inequality on coordinated convex function. J. Inequal. Appl. 2019, 2019, 192. [Google Scholar] [CrossRef]
- Dragomir, S.S. Lebesgue Integral Inequalities of Jensen Type for λ-Convex Functions. Armen. J. Math. 2018, 10, 1–19. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.M. An application of error bounds for convex programming in a linear space. SIAM J. Control 1975, 13, 271–273. [Google Scholar] [CrossRef]
- Özdemir, M.E. Some inequalities for the s-Godunova-Levin type functions. Math. Sci. 2015, 9, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Pearce, C.E.; Pečarić, J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl. Math. Lett. 2000, 13, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Kılıçman, A.; Saleh, W. Generalized preinvex functions and their applications. Symmetry 2018, 10, 493. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, O.; Kılıçman, A. New fractional inequalities of midpoint type via s-convexity and their application. J. Inequal. Appl. 2019, 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, O.; Kılıçman, A. Generalized Integral Inequalities for Hermite-Hadamard-Type Inequalities via s-Convexity on Fractal Sets. Mathematics 2019, 7, 1065. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2008, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S.; Pecaric, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
- Godunova, E.K. Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. Numer. Math. Math. Phys. 1985, 138, 166. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. On Jensen’s inequality for a class of functions of Godunova and Levin. Periodica Math. Hung. 1996, 33, 93–100. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Mond, B. On Hadamard’s inequality for a class of functions of Godunova and Levin. Indian J. Math. 1997, 39, 1–10. [Google Scholar]
- Radulescu, M.; Radulescu, S.; Alexandrescu, P. On the Godunova-Levin-Schur class of functions. Math. Inequal. Appl. 2009, 12, 853–862. [Google Scholar] [CrossRef]
- Dragomir, S.S. Integral inequalities of Jensen type for λ-convex functions. Matematicki Vesnik 2016, 68, 45–57. [Google Scholar]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Ben-Israel, A.; Mond, B. What is invexity? ANZIAM J. 1986, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.H.; Baloch, I.A.; Işcan, I. On Harmonically-Preinvex Functions. J. Funct. Spaces 2017. [Google Scholar] [CrossRef]
- Pavic, Z.; Wu, S.; Novoselac, V. Important inequalities for preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3570–3579. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Barani, A.; Ghazanfari, A.G.; Dragomir, S.S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012, 2012, 247. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, O.; Kılıçman, A. Some Integral Inequalities for h-Godunova-Levin Preinvexity. Symmetry 2019, 11, 1500. https://doi.org/10.3390/sym11121500
Almutairi O, Kılıçman A. Some Integral Inequalities for h-Godunova-Levin Preinvexity. Symmetry. 2019; 11(12):1500. https://doi.org/10.3390/sym11121500
Chicago/Turabian StyleAlmutairi, Ohud, and Adem Kılıçman. 2019. "Some Integral Inequalities for h-Godunova-Levin Preinvexity" Symmetry 11, no. 12: 1500. https://doi.org/10.3390/sym11121500
APA StyleAlmutairi, O., & Kılıçman, A. (2019). Some Integral Inequalities for h-Godunova-Levin Preinvexity. Symmetry, 11(12), 1500. https://doi.org/10.3390/sym11121500