
symmetryS S

Article

Some Integral Inequalities for h-Godunova-Levin
Preinvexity

Ohud Almutairi 1,† and Adem Kılıçman 2,*,†

1 Department of Mathematics, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia,
AhoudbAlmutairi@gmail.com

2 Department of Mathematics, Universiti Putra Malaysia, Serdang 43400, Malaysia
* Correspondence: akilic@upm.edu.my; Tel.: +603-89466813
† These authors contributed equally to this work.

Received: 15 November 2019; Accepted: 9 December 2019; Published: 11 December 2019

Abstract: In this study, we define new classes of convexity called h-Godunova–Levin and
h-Godunova–Levin preinvexity, through which some new inequalities of Hermite–Hadamard type
are established. These new classes are the generalization of several known convexities including
the s-convex, P-function, and Godunova–Levin. Further, the properties of the h-Godunova–Levin
function are also discussed. Meanwhile, the applications of h-Godunova–Levin Preinvex function
are given.
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1. Introduction

Recently, the theory of convexity has become a broad area of study since it is related to the
theory of inequalities. Many such inequalities are frequently reported in the literature as a result
of applications of convexity in both pure and applied sciences (see [1–4]). Considering its many
applications in different branches of mathematics, convexity can provide a basis for estimating error
bounds in a large class of problems [5]. One example of these is how the convexity was applied to
estimate errors when using a trapezoidal formula for numerical integration [6,7]. Others include
studying problems in nonlinear programming and applying them to special means [8]. Among them,
an interesting inequality for convex function is of Hermite–Hadamard type, which can be stated
as follows:

Let S be a nonempty subset in R, ψ : S → R be a convex function on S, and u1, u2 ∈ S, u1 < u2,
then we have

ψ

(
u1 + u2

2

)
≤ 1

u2 − u1

∫ u2

u1

ψ(x)dx ≤ ψ(u1) + ψ(u2)

2
. (1)

If ψ is a concave function, the two inequalities can be held in the reverse direction. These
inequalities have been extensively improved and generalized. For example, see [1,9–12].

Definition 1. [13] A positive function ψ : S ⊆ R→ R is said to be a Godunova–Levin if

ψ(δu1 + (1− δ)u2) ≤
ψ(u1)

δ
+

ψ(u2)

1− δ
, ∀u1, u2 ∈ S, δ ∈ (0, 1).

Several other properties related to this class of functions are given in [14–16]. For example, both
the positive monotone and positive convex functions belong to this class.
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This concept has been recently extended to s-Godunova–Levin type of convexity by Dragomir [17].
Furthermore, studies were conducted on s-Godunova–Levin type convexity and can be found in the
literature [6]. Another important class of convex function is h-convexity, which was introduced by
Varošanec [18], through which several generalizations and extensions were made.

Definition 2. [18] Let ψ, ω : S ⊆ R → R be two functions, such that u1, u2 ∈ S, the inequality (ψ(u1)−
ψ(u2))(ω(u1)−ω(u2)) ≥ 0 is called similarly ordered for ψ and ω on S.

Now, the following preliminaries on invexity analysis are necessary since they can be frequently
used throughout this study. Therefore, we let S be the nonempty subset in R and let ψ : S→ R and
ζ(., .) : S× S→ R be a continuous function.

Definition 3. [19,20] A set S is said to be an invex set with respect to ζ(., .) if, for every u1, u2 ∈ S, and
δ ∈ [0, 1]

u1 + δζ(u2, u1) ∈ S.

Definition 4. [20] A function ψ on the invex set S is said to be preinvex with respect to ζ if

ψ(u1 + δζ(u2, u1)) ≤ (1− δ)ψ(u1) + δψ(u2); ∀u1, u2 ∈ S; δ ∈ [0, 1]. (2)

Usually, the preinvex functions can be convexity if ζ(u2, u1) = u2 − u1 holds in (2).
Other properties of preinvex functions are given in [21,22].

We arrange this paper as follows. Section 2 introduces the new classes of h-Godunova–Levin,
denoted by SGX( 1

h , t) and SGV( 1
h , t), together with their properties. This class of function unifies

different classes of convexity: s-Godunova–Levin, P-functions, s-convexity, and Godunova–Levin.
In Section 3, we prove new Hermite–Hadamard inequalities via h-Godunova–Levin preinvexity.
Section 4 introduces a new definition of h-Godunova–Levin preinvexity, which can be the
generalization of preinvexity. This Section also presents new Hermite–Hadamard type inequalities
for h-Godunova–Levin preinvexity. Section 5 gives some applications to special means, as well as an
application to numerical integration.

2. The h-Godunova–Levin Functions and Their Properties

This section introduces the notion of h-Godunova–Levin function together with their properties.
This class of function can be denoted by SGX( 1

h , t) and SGV( 1
h , t) for h-Godunova–Levin convex and

h-Godunova–Levin concave, respectively.

Definition 5. Suppose h : (0, 1)→ R. A non-negative function ψ : S→ R is said to be h-Godunova–Levin,
or that ψ belongs to the class SGX( 1

h , S), for all u1, u2 ∈ S and δ ∈ (0, 1), we have

ψ(δu1 + (1− δ)u2) ≤
ψ(u1)

h(δ)
+

ψ(u2)

h(1− δ)
. (3)

Remark 1. If h(δ) = δ, h(δ) = 1
δ , h(δ) = δs, h(δ) = 1, h(δ) = 1

δs in inequality (3), the definition of
h-Godunova–Levin function can be clearly reduced to different types of convexity, such as Godunova–Levin
function, classical convex, s-Godunova–Levin function, P-function, and s-convex function. This indicates that
h-Godunova–Levin function is the generalization of these different classes.
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Proposition 1. Suppose that h1, h2 are two positive functions defined on the interval S satisfying the property

1
h1(δ)

≤ 1
h2(δ)

, δ ∈ (0, 1).

If ψ ∈ SGX( 1
h1

, S), then ψ ∈ SGX( 1
h2

, S). If ψ ∈ SGV( 1
h1

, S), then ψ ∈ SGV( 1
h2

, S), where h1(t) 6= 0 and
h2(t) 6= 0.

Proof. If ψ ∈ SGX( 1
h1

, S), then for any u1, u2 ∈ S and δ ∈ (0, 1) we get

ψ(δu1 + (1− δ)u2) ≤
1

h1(δ)
ψ(u1) +

1
h1(1− δ)

ψ(u2)

≤ 1
h2(δ)

ψ(u1) +
1

h2(1− δ)
ψ(u2),

i.e., ψ ∈ SGX( 1
h2

, S).

Proposition 2. If ψ, ω ∈ SGX( 1
h , S) and λ > 0, then ψ + ω, λψ ∈ SGX( 1

h , S). If ψ, ω ∈ SGV( 1
h , S) and

λ > 0, then ψ + ω, λψ ∈ SGV( 1
h , S).

Proof. The proof is clear from the definition of the classes h-Godunova–Levin convex and
h-Godunova–Levin concave, SGX( 1

h , S) and SGV( 1
h , S), respectively.

Proposition 3. Suppose that ψ and ω are two h-Godunova–Levin functions and satisfying the property given
in Definition 2. Then, the product of these two functions satisfies

ψ(δu1 + (1− δ)u2)ω(δu1 + (1− δ)u2) ≤
[

1
h(δ)

ψ(u1)ω(u1) +
1

h(1− δ)
ψ(u2)ω(u2)

][
1

h(δ)
+

1
h(1− δ)

]
.

Proof. Given that ψ and ω are h-Godunova–Levin functions, we have

ψ(δu1 + (1− δ)u2)ω(δu1 + (1− δ)u2) ≤
(

ψ(u1)

h(δ)
+

ψ(u2)

h(1− δ)

)(
ω(u1)

h(δ)
+

ω(u2)

h(1− δ)

)
=

1
(h(δ))2 ψ(u1)ω(u1) +

1
h(δ)h(1− t)

[ψ(u1)ω(u2)

+ ψ(u2)ω(u1)] +
1

(h(1− δ))2 ψ(u2)ω(u2)

=

[
1

h(δ)
ψ(u1)ω(u1) +

1
h(1− δ)

ψ(u2)ω(u2)

][
1

h(δ)
+

1
h(1− δ)

]
.

Proposition 4. Suppose that ψ : S1 → [0, ∞), ω : S2 → [0, ∞) are two functions such that ω(S2) ⊆ S1.
If the function ω is convex (concave), and the function ψ is increasing (decreasing), ψ ∈ SGX( 1

h , S1), then the
composition ψ ◦ω belongs to SGX( 1

h , S2). Meanwhile, if the function ω is convex (concave) and the function
ψ is decreasing (increasing), ψ ∈ SGV( 1

h , S1), then the composition ψ ◦ω belongs to SGV( 1
h , S2).

Proof. Suppose that ω is a convex function, ψ is increasing, and ψ ∈ SGX( 1
h , S1). Then, we have

(ψ ◦ω)((δu1 + (1− δ)u2)) ≤ ψ(δω(u1) + (1− δ)ω(u2)) ≤
1

h(δ)
(ψ ◦ω)(u1) +

1
h(1− δ)

(ψ ◦ω)(u2),

for all u1, u2 ∈ S2, and δ ∈ (0, 1).
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3. New Hermite–Hadamard Inequality for h-Godunova–Levin Convex Function

The following generalization of the Hermite–Hadamard inequalities for h-Godunova–Levin
convex function can be proved in this section.

Theorem 1. Let ψ ∈ SGX( 1
h , S), u1, u2 ∈ S, with u1 < u2 and ψ ∈ L1([u1, u2]), where h : (0, 1)→ R is a

positive function and h(δ) 6= 0, we have

h
(

1
2

)
2

ψ

(
u1 + u2

2

)
≤ 1

u2 − u1

∫ u2

u1

ψ(x)dx ≤ [ψ(u1) + ψ(u2)]
∫ 1

0

1
h(δ)

dδ. (4)

Proof. Since ψ is h-Godunova–Levin, we have

ψ(δu1 + (1− δ)u2) ≤
ψ(u1)

h(δ)
+

ψ(u2)

h(1− δ)
. (5)

Considering v1 = αu1 + (1− α)u2, v2 = (1− α)u1 + αu2, and δ = 1
2 in (5), we obtain

ψ

(
u1 + u2

2

)
≤ 1

h( 1
2 )

ψ(αu1 + (1− α)u2) +
1

h( 1
2 )

ψ((1− α)u1 + αu2)

≤ 1
h( 1

2 )
[ψ(αu1 + (1− α)u2) + ψ((1− α)u1 + αu2)]. (6)

Thus, after integrating (6), we get the following

ψ

(
u1 + u2

2

)
≤ 1

h( 1
2 )

[ ∫ 1

0
ψ(αu1 + (1− α)u2)dα +

∫ 1

0
ψ((1− α)u1 + αu2)dα

]
≤ 2

h( 1
2 )(u2 − u1)

∫ u2

u1

ψ(x)dx.

This ends the proof of the first inequality. Now, taking v1 = u1 and v2 = u2 in (5) and integrating
the result over the interval [0, 1] with respect to δ, we obtain

1
u2 − u1

∫ u2

u1

ψ(x)dx ≤ [ψ(u1) + ψ(u2)]
∫ 1

0

1
h(δ)

dδ.

This completes the proof of the second inequality (4).

Remark 2. In Theorem 1, choosing h(δ) = δs, we obtain the Hermite–Hadamard inequalities for s-convexity
in the second sense, Theorem 2.1. in [23]. If we choose h(δ) = 1, Theorem 1 can be reduced to the result for
P-function [12]. Taking h(δ) = 1

δ , the theorem reduces the result for classical Hermite–Hadamard inequalities
given in inequality (1).

4. Hermite–Hadamard Inequalities for h-Godunova–Levin Preinvex Function

The definition of h-Godunova–Levin preinvex is introduced in this section. The inequalities of
Hermite–Hadamard type for functions whose first derivatives absolute values are h-Godunova–Levin
preinvex are also presented here.

Definition 6. A function ψ : S→ R is said to be h-Godunova–Levin preinvex function with respect to ζ if, for
all u1, u2 ∈ S, δ ∈ (0, 1),

ψ(u1 + δζ(u2, u1)) ≤
ψ(u1)

h(1− δ)
+

ψ(u2)

h(δ)
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holds.

The following lemma can be used to prove the generalization of the Hermite–Hadamard
inequalities for h-Godunova–Levin preinvexity.

Lemma 1. [24] Suppose that ψ : S = [u1, u1 + ζ(u2, u1)] → (0, ∞) is a differentiable function, where
u1, u1 + ζ(u2, u1) ∈ S with u1 < u1 + ζ(u2, u1). If ψ′ ∈ L1[u1, u1 + ζ(u2, u1)], we have

1
ζ(u2, u1)

∫ u1+ζ(u2,u1)

u1

ψ(x)dx− ψ(u1) + ψ(u1 + ζ(u2, u1))

2
=

ζ(u2, u1)

2

[ ∫ 1

0
(1− 2t)ψ′(u1 + δζ(u2, u1))dδ

]
.

Theorem 2. Suppose that ψ : S = [u1, u1 + ζ(u2, u1)] → (0, ∞) is a differentiable mapping on S◦,
u1, ζ(u2, u1) ∈ S◦, with u1 < u1 + ζ(u2, u1). If |ψ′| is a h-Godunova–Levin preinvex on [u1, u1 + ζ(u2, u1)],
then we get the following inequality:

∣∣∣∣ψ(u1) + ψ(u1 + ζ(u2, u1))

2
− 1

ζ(u2, u1)

∫ u1+ζ(u2 ,u1)

u1

ψ(x)dx
∣∣∣∣ ≤ ζ(u2, u1)

2
[|ψ′(u1)|+ |ψ′(u2)|]

×
∫ 1

0
|1− 2δ|

[
1

h(δ)
+

1
h(1− δ)

]
dδ. (7)

Proof. We use Lemma 1 to prove inequality (7) as follows:

∣∣∣∣ψ(u1) + ψ(u1 + ζ(u2, u1))

2
− 1

ζ(u2, u1)

∫ u1+ζ(u2,u1)

u1

ψ(x)dx
∣∣∣∣ = ∣∣∣∣ ζ(u2, u1)

2

∫ 1

0
(1− 2δ)ψ′(u1 + δζ(u2, u1))dδ

∣∣∣∣
≤ ζ(u2, u1)

2

∫ 1

0
|1− 2δ||ψ′(u1 + δζ(u2, u1))dδ|

≤ ζ(u2, u1)

2

∫ 1

0
|1− 2δ|

∣∣∣∣ψ′(u1)

h(δ)
+

ψ′(u2)

h(1− δ)

∣∣∣∣dδ

≤ ζ(u2, u1)

2
[|ψ′(u1)|+ |ψ′(u2)|]

×
∫ 1

0
|1− 2δ|

[
1

h(δ)
+

1
h(1− δ)

]
dδ.

Corollary 1. Since
∫ 1

0

1
h(1− δ)

dδ =
∫ 1

0

1
h(δ)

dδ, subsituting this fact in inequality (7), we get

∣∣∣∣ψ(u1) + ψ(u1 + ζ(u2, u1))

2
− 1

ζ(u2, u1)

∫ u1+ζ(u2 ,u1)

u1

ψ(x)dx
∣∣∣∣ ≤ ζ(u2, u1)

2
[|ψ′(u1)|+ |ψ′(u2)|]

×
∫ 1

0

|1− 2δ|
h(δ)

dδ. (8)

Corollary 2. Taking ζ(u2, u1) = u2 − u1 in inequality (8), we obtain the following inequality:∣∣∣∣ψ(u1) + ψ(u2)

2
− 1

u2 − u1

∫ u2

u1

ψ(x)dx
∣∣∣∣ ≤ u2 − u1

2
[|ψ′(u1)|+ |ψ′(u2)|]

∫ 1

0

|1− 2δ|
h(δ)

dδ.

Theorem 3. Suppose that ψ : S = [u1, u1 + ζ(u2, u1)] → (0, ∞) is a differentiable function on S◦,
u1, ζ(u2, u1) ∈ S◦, with u1 < u1 + ζ(u2, u1). If |ψ′| is a h-Godunova–Levin preinvex on [u1, u1 + ζ(u2, u1)],
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with p > 1 such that q = p
p−1 , we obtain

∣∣∣∣ψ(u1) + ψ(u1 + ζ(u2, u1))

2
− 1

ζ(u2, u1)

∫ u1+ζ(u2,u1)

u1

ψ(x)dx
∣∣∣∣ ≤ ζ(u2, u1)

(p + 1)
1
p
(|ψ′(u1)|q

+|ψ′(u2)|q)
1
q

∫ 1

0

1
h(δ)

dδ.

Proof. Applying Lemma 1, we have

∣∣∣∣ψ(u1) + ψ(u1 + ζ(u2, u1))

2
− 1

ζ(u2, u1)

∫ u1+ζ(u2 ,u1)

u1

ψ(x)dx
∣∣∣∣ = ∣∣∣∣ ζ(u2, u1)

2

∫ 1

0
(1− 2δ)ψ′(u1 + δζ(u2, u1))dδ

∣∣∣∣
≤ ζ(u2, u1)

2

∫ 1

0
|1− 2δ||ψ′(u1 + δζ(u2, u1))dδ|.

We use Hölder’s integral inequality as follows:

∣∣∣∣ψ(u1) + ψ(u1 + ζ(u2, u1))

2
− 1

ζ(u2, u1)

∫ u1+ζ(u2 ,u1)

u1

ψ(x)dx
∣∣∣∣ ≤ ζ(u2, u1)

2

( ∫ 1

0
|1− 2δ|pdδ

) 1
p

×
( ∫ 1

0
|ψ′(u1 + δζ(u2, u1))|qdδ

) 1
q

,

where 1
p + 1

q = 1.
Now, since |ψ′|p is a h-Godunova–Levin preinvex, we obtain

∫ 1

0
|ψ′(u1 + δζ(u2, u1))|qdδ ≤

∫ 1

0

(
|ψ′(u1)|q

h(δ)
+
|ψ′(u2)|q
h(1− δ)

)
dδ

≤ 2
∫ 1

0

1
h(δ)

dδ(|ψ′(u1)|q + |ψ′(u2)|q).

Using the basic calculus, we have
∫ 1

0 |1 − 2δ|pdδ = 1
p+1 . This completes the proof of the

Theorem 3.

Corollary 3. Choosing ζ(u2, u1) = u2 − u1 in Theorem 3 reduces inequality (9) to the following:∣∣∣∣ψ(u1) + ψ(u2)

2
− 1

u2 − u1

∫ u2

u1

ψ(x)dx
∣∣∣∣ ≤ u2 − u1

(p + 1)
1
p
(|ψ′(u1)|q + |ψ′(u2)|q)

1
q

∫ 1

0

1
h(δ)

dδ.

Theorem 4. With the assumptions of Theorem 3, we get the following:

∣∣∣∣ψ(u1) + ψ(u1 + ζ(u2, u1))

2
− 1

ζ(u2, u1)

∫ u1+ζ(u2 ,u1)

u1

ψ(x)dx
∣∣∣∣ ≤ ζ(u2, u1)

4

( ∫ 1

0

|1− 2δ|
h(δ)

dδ

) 1
q

×(|ψ′(u1)|q + |ψ′(u2)|q). (9)
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Proof. We use Lemma 1 to show that

∣∣∣∣ψ(u1) + ψ(u1 + ζ(u2, u1))

2
− 1

ζ(u2, u1)

∫ u1+ζ(u2 ,u1)

u1

ψ(x)dx
∣∣∣∣ = ∣∣∣∣ ζ(u2, u1)

2

∫ 1

0
(1− 2δ)ψ′(u1 + δζ(u2, u1))dδ

∣∣∣∣
≤ ζ(u2, u1)

2

∫ 1

0
|1− 2δ||ψ′(u1 + δζ(u2, u1))dδ|.

Applying power-mean inequality, we get

∣∣∣∣ψ(u1) + ψ(u1 + ζ(u2, u1))

2
− 1

ζ(u2, u1)

∫ u1+ζ(u2,u1)

u1

ψ(x)dx
∣∣∣∣ ≤ ζ(u2, u1)

2

( ∫ 1

0
|1− 2δ|dδ

)1− 1
q

×
( ∫ 1

0
|1− 2δ||ψ′(u1 + δζ(u2, u1))|qdδ

) 1
q

.

Since |ψ′|q is a h-Godunova–Levin preinvex, we obtain

∫ 1

0
|1− 2δ||ψ′(u1 + δζ(u2, u1))|qdδ ≤

∫ 1

0

(
|1− 2δ|

h(δ)
|ψ′(u1)|q +

|1− 2δ|
h(1− δ)

|ψ′(u2)|q
)

dδ

≤
∫ 1

0

|1− 2δ|
h(δ)

dδ(|ψ′(u1)|q + |ψ′(u2)|q).

Applying the basic calculus, we have
∫ 1

0
|1− 2δ|dδ =

1
2

.

Corollary 4. Taking ζ(u2, u1) = u2 − u1, h(δ) = 1 and q = 1 in inequality (9), we have∣∣∣∣ψ(u1) + ψ(u2)

2
− 1

u2 − u1

∫ u1

u1

ψ(x)dx
∣∣∣∣ ≤ u2 − u1

8
(|ψ′(u1)|+ |ψ′(u2)|),

which is similar to Theorem 2.2 repoted by Dragomir and Agarwal [4].

5. Applications

5.1. Applications to Numerical Integration

As mentioned in the introduction, the convexity can be applied to many areas of studies. Here,
we give an example of how the h-Godunova–Levin convex and preinvex functions can be used to
estimate the errors accumulated when using the trapezoidal formula for numerical integration.

Let d be a division of the interval [u1, u2], i.e., d : u1 = v0 < v1 < · · · < vn−1 < vn = u2, of a
given quadrature formula ∫ u2

u1

ψ(x)dx ∼= T(ψ, d) + E(ψ, d),

where

T(ψ, d) =
n−1

∑
i=0

ψ (vi) + ψ (vi+1)

2
(vi+1 − vi)

is the trapezoidal formula. The associated approximation error is denoted by E(ψ, d).
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Proposition 5. Let ψ be a differentiable mapping on S◦, u1, u2 ∈ S◦ with u1 < u2. If |ψ′| is a
h-Godunova–Levin preinvex on [u1, u1 + ζ(u2, u1)], then for every division d of [u1, u2], we have

|En(ψ, d)| ≤ 1
2

n−1

∑
i=0

(vi+1 − vi)
2 (∣∣ψ′ (vi)

∣∣+ ∣∣ψ′ (vi+1)
∣∣) ∫ 1

0

|1− 2δ|
h(δ)

dδ

≤
n−1

∑
i=0

(vi+1 − vi)
2 max

{∣∣ψ′(u1)
∣∣ ,
∣∣ψ′(u2)

∣∣} ∫ 1

0

|1− 2δ|
h(δ)

dδ.

(10)

Proof. We now apply Corollary (2) on the subinterval [vi, vi+1] (i = 0, 1, 2, . . . , n− 1) of the division d.
This gives the following:∣∣∣∣ψ (vi) + ψ (vi+1)

2
(vi+1 − vi)−

∫ vi+1

vi

ψ(x)dx
∣∣∣∣ ≤ (vi+1 − vi)

2 (|ψ′ (vi)|+ |ψ′ (vi+1)|)
2

∫ 1

0

|1− 2δ|
h(δ)

dδ.

Since |ψ′| is h-Godunova–Levin preinvex, using the triangle inequality and summing the result
over i from 0 to n− 1, we get∣∣∣∣T(ψ, d)−

∫ u2

u1

ψ(x)dx
∣∣∣∣ ≤ 1

2

n−1

∑
i=0

(vi+1 − vi)
2 (∣∣ψ′ (xi)

∣∣+ ∣∣ψ′ (vi+1)
∣∣)

≤ max
{∣∣ψ′ (vi)

∣∣ ,
∣∣ψ′ (vi+1)

∣∣} n−1

∑
i=0

(vi+1 − vi)
2
∫ 1

0

|1− 2δ|
h(δ)

dδ

≤ max
{∣∣ψ′(u1)

∣∣ ,
∣∣ψ′(u2)

∣∣} n−1

∑
i=0

(vi+1 − vi)
2
∫ 1

0

|1− 2δ|
h(δ)

dδ.

The above inequality is an error bound of numerical integration obtained by h-Godunova–Levin
preinvex. Choosing different functions of h(δ) in inequality (10) can give different results (see [6]).

5.2. Applications to Special Means

We finally use Hermite–Hadamard inequalities for h-Godunova–Levin preinvex function to form
the inequalities for special means. Thus, the means of two positive numbers u1, u2, and u1 6= u2 can be
considered as follows:

1. The arithmetic mean:
A = A(u1, u2) =

u1 + u2

2
; u1, u2 ∈ R, with u1, u2 > 0.

2. The generalized log-mean:

Lm(u1, u2) =

[
um+1

2 − um+1
1

(m + 1)(u2 − u1)

] 1
m

, m 6= −1, 0.

The following propositions are obtained from the results in Section 4 and the above applications
of special means.

Proposition 6. Let 0 < u1 < u2, where m ≥ 2, then we have∣∣∣∣A(um
1 , um

2 )− Lm
m(u1, u2)

∣∣∣∣ ≤ m(u2 − u1)

2
A(|um−1

1 |, |um−1
2 |)

∫ 1

0

|1− 2δ|
h(δ)

dδ.

Proof. This inequality is obtained from Corollary (2) and applied on the h-Godunova–Levin preinvex
function ψ : R→ R, ψ(x) = xm, m ≥ 2.
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Proposition 7. Let 0 < u1 < u2, where p > 1, q = p
p−1 and m ≥ 2, then we get∣∣∣∣A(um

1 , um
2 )− Lm

m(u1, u2)

∣∣∣∣ ≤ m(u2 − u1)

(p + 1)
1
p

A(|u1|
(m−1)p

p−1 , |u2|
(m−1)p

p−1 )
1
q

∫ 1

0

1
h(δ)

dδ.

Proof. We derived this inequality from Corollary 3 applied to the h-Godunova–Levin preinvex function
ψ : R→ R.

6. Conclusions

Since the Hermite–Hadamard type inequalities, due to their importance, can be found in many
fields of study, the present study established new generalizations of such inequalities. Thus, two
classes of function, h-Godunova–Levin and h-Godunova–Levin preinvex functions, along with some
of their properties were established here. The applications to special means and numerical integration
were also discussed in this study.
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