The Grimus–Neufeld Model with FlexibleSUSY at One-Loop
Abstract
:1. Introduction
2. Results
2.1. Summary of Features of the Grimus–Neufeld Model
2.1.1. Lagrangian
2.1.2. Tree-Level Mass Matrices and Tree-Level Masses
2.1.3. Leading Order Loop-Level Masses
2.2. The Grimus–Lavoura Approximation
- Staying in the interaction eigenstates, as defined by the charged leptons, calculate the neutrino mass matrix using Equation (5).
- Reducing the problem to the light neutrinos, one arrives at the effective symmetric neutrino mass matrix , which has the tree-level value
- The approximation consists now of:
- Assuming to be irrelevant for the light neutrinos with the reasoning that (or ) is not measured. It is still a free parameter of the theory that can be adjusted as needed.
- Observing that the corrections with are subdominant, because they are suppressed by the squares of small Yukawa or gauge couplings and additionally by the small charged lepton masses.
- Assuming that the loop correction is of the same order as the tree-level value .
2.3. Using the Grimus–Lavoura Approximation
2.4. The One-Loop Improved Lagrangian
2.5. Renormalizing the GNM
2.6. FlexibleSUSY for the GNM in a Nutshell
2.6.1. Our Achievements with the GNM in FlexibleSUSY
2.6.2. Plans with the GNM in FlexibleSUSY
- Do we understand the tree-level correctly?
- Are the different formulations of defining the input parameters really equivalent?
- Does the GL approximation give correct neutrino masses not only at leading order, but also at full one-loop level?
- Is the limitation of the seesaw scale a numeric artifact from the finite precision or can we find a physical reason for the limitation?
3. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2HDM | two Higgs doublet model |
BSM | beyond the standard model physics |
GNM | Grimus–Neufeld model |
GUT | grand unified theory |
LHC | large hadron collider |
PMNS | Pontecorvo–Maki–Nakagawa–Sakata matrix |
QFT | quantum field theory |
QM | quantum mechanics |
SM | standard model |
References
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- De Salas, P.F.; Forero, D.V.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 2018, 782, 633–640. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Kopp, J. Neutrino Oscillations: Quantum Mechanics vs. Quantum Field Theory. J. High Energy Phys. 2010. [Google Scholar] [CrossRef]
- Schechter, J.; Valle, J. Neutrino Masses in SU(2) × U(1) Theories. Phys. Rev. D 1980, 22, 2227. [Google Scholar] [CrossRef]
- Zee, A. A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation. Phys. Lett. B 1980, 93, 389. [Google Scholar] [CrossRef]
- Branco, G.C.; Geng, C.Q. Naturally Small Dirac Neutrino Masses in Superstring Theories. Phys. Rev. Lett. 1987, 58, 969. [Google Scholar] [CrossRef]
- Chang, D.; Mohapatra, R.N. Small and Calculable Dirac Neutrino Mass. Phys. Rev. Lett. 1987, 58, 1600. [Google Scholar] [CrossRef]
- Babu, K.S. Model of ‘Calculable’ Majorana Neutrino Masses. Phys. Lett. B 1988, 203, 132–136. [Google Scholar] [CrossRef]
- Grimus, W.; Neufeld, H. Radiative Neutrino Masses in an SU(2) × U(1) Model. Nucl. Phys. B 1989, 325, 18. [Google Scholar] [CrossRef]
- Ibarra, A.; Simonetto, C. Understanding neutrino properties from decoupling right-handed neutrinos and extra Higgs doublets. J. High Energy Phys. 2011, 11, 022. [Google Scholar] [CrossRef]
- Jurčiukonis, D.; Gajdosik, T.; Juodagalvis, A. Seesaw neutrinos with one right-handed singlet field and a second Higgs doublet. arXiv 2019, arXiv:hep-ph/1909.00752. [Google Scholar]
- Athron, P.; Park, J.H.; Stöckinger, D.; Voigt, A. FlexibleSUSY—A spectrum generator generator for supersymmetric models. Comput. Phys. Commun. 2015, 190, 139–172. [Google Scholar] [CrossRef]
- Athron, P.; Bach, M.; Harries, D.; Kwasnitza, T.; Park, J.H.; Stöckinger, D.; Voigt, A.; Ziebell, J. FlexibleSUSY 2.0: Extensions to investigate the phenomenology of SUSY and non-SUSY models. arXiv 2017, arXiv:hep-ph/1710.03760. [Google Scholar] [CrossRef]
- Staub, F. From Superpotential to Model Files for FeynArts and CalcHep/CompHep. Comput. Phys. Commun. 2010, 181, 1077–1086. [Google Scholar] [CrossRef]
- Staub, F. Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies. Comput. Phys. Commun. 2011, 182, 808–833. [Google Scholar] [CrossRef]
- Staub, F. SARAH 3.2: Dirac Gauginos, UFO output, and more. Comput. Phys. Commun. 2013, 184, 1792–1809. [Google Scholar] [CrossRef]
- Staub, F. SARAH 4: A tool for (not only SUSY) model builders. Comput. Phys. Commun. 2014, 185, 1773–1790. [Google Scholar] [CrossRef]
- Allanach, B. SOFTSUSY: A program for calculating supersymmetric spectra. Comput. Phys. Commun. 2002, 143, 305–331. [Google Scholar] [CrossRef]
- Allanach, B.; Athron, P.; Tunstall, L.C.; Voigt, A.; Williams, A. Next-to-Minimal SOFTSUSY. Comput. Phys. Commun. 2014, 185, 2322–2339. [Google Scholar] [CrossRef]
- Haber, H.E.; O’Neil, D. Basis-independent methods for the two-Higgs-doublet model. II. The Significance of tan beta. Phys. Rev. D 2006, 74, 015018. [Google Scholar] [CrossRef]
- Pal, P.B. Dirac, Majorana and Weyl fermions. Am. J. Phys. 2011, 79, 485–498. [Google Scholar] [CrossRef]
- Grzadkowski, B.; Haber, H.E.; Ogreid, O.M.; Osland, P. Heavy Higgs boson decays in the alignment limit of the 2HDM. J. High Energy Phys. 2018, 12, 056. [Google Scholar] [CrossRef]
- Grzadkowski, B.; Ogreid, O.M.; Osland, P. The CP-symmetries of the 2HDM. In Proceedings of the 6th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2018), Vienna, Austria, 26–30 November 2018. [Google Scholar]
- Davidson, S.; Haber, H.E. Basis-independent methods for the two-Higgs-doublet model. Phys. Rev. D 2005, 72, 035004. [Google Scholar] [CrossRef]
- Haber, H.E.; O’Neil, D. Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U. Phys. Rev. D 2011, 83, 055017. [Google Scholar] [CrossRef]
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 2012, 516, 1–102. [Google Scholar] [CrossRef]
- Grimus, W.; Lavoura, L. Soft lepton flavor violation in a multi Higgs doublet seesaw model. Phys. Rev. D 2002, 66, 014016. [Google Scholar] [CrossRef]
- Dūdėnas, V.; Gajdosik, T. Gauge dependence of tadpole and mass renormalization for a seesaw extended 2HDM. Phys. Rev. D 2018, 98, 035034. [Google Scholar] [CrossRef]
- Dūdėnas, V. Renormalization of Neutrino Masses in the Grimus-Neufeld Model; Vilniaus Universiteto Leidykla: Vilnius, Lithuania, 2019. [Google Scholar]
- Allanacha, B.C.; Balázs, C.; Bélanger, G.; Bernhardt, M.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; et al. SUSY Les Houches Accord 2. Comput. Phys. Commun. 2009, 180, 8–25. [Google Scholar] [CrossRef]
- Basso, L.; Belyaev, A.; Chowdhury, D.; Hirsch, M.; Khalil, S.; Moretti, S.; O’Leary, B.; Porod, W.; Staub, F. Proposal for generalised Supersymmetry Les Houches Accord for see-saw models and PDG numbering scheme. Comput. Phys. Commun. 2013, 184, 698–719. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica; Version 12.0; Wolfram Research, Inc.: Champaign, IL, USA, 2019. [Google Scholar]
- Grimus, W.; Lavoura, L. One loop corrections to the seesaw mechanism in the multiHiggs doublet standard model. Phys. Lett. B 2002, 546, 86–95. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Draukšas, S.; Dūdėnas, V.; Gajdosik, T.; Juodagalvis, A.; Juodsnukis, P.; Jurčiukonis, D. The Grimus–Neufeld Model with FlexibleSUSY at One-Loop. Symmetry 2019, 11, 1418. https://doi.org/10.3390/sym11111418
Draukšas S, Dūdėnas V, Gajdosik T, Juodagalvis A, Juodsnukis P, Jurčiukonis D. The Grimus–Neufeld Model with FlexibleSUSY at One-Loop. Symmetry. 2019; 11(11):1418. https://doi.org/10.3390/sym11111418
Chicago/Turabian StyleDraukšas, Simonas, Vytautas Dūdėnas, Thomas Gajdosik, Andrius Juodagalvis, Paulius Juodsnukis, and Darius Jurčiukonis. 2019. "The Grimus–Neufeld Model with FlexibleSUSY at One-Loop" Symmetry 11, no. 11: 1418. https://doi.org/10.3390/sym11111418
APA StyleDraukšas, S., Dūdėnas, V., Gajdosik, T., Juodagalvis, A., Juodsnukis, P., & Jurčiukonis, D. (2019). The Grimus–Neufeld Model with FlexibleSUSY at One-Loop. Symmetry, 11(11), 1418. https://doi.org/10.3390/sym11111418