# Spontaneous Emission of an Atom Near an Oscillating Mirror

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Spontaneous Emission Rate of One Atom near an Oscillating Mirror

## 3. Spectrum of the Radiation Emitted

## 4. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Chang, D.E.; Douglas, J.S.; Gonzalez-Tudela, A.; Hung, C.-L.; Kimble, H.J. Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys.
**2018**, 90, 031002. [Google Scholar] [CrossRef] - Raimond, J.M.; Brune, M.; Haroche, S. Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys.
**2001**, 73, 565. [Google Scholar] [CrossRef] - Milonni, P.W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Purcell, E.M. Spontaneous emission probabilities at radio frequencies. Phys. Rev.
**1946**, 69, 681. [Google Scholar] - Kleppner, D. Inhibited Spontaneous Emission. Phys. Rev. Lett.
**1981**, 47, 233. [Google Scholar] [CrossRef] - Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys.
**2015**, 87, 347. [Google Scholar] [CrossRef] - Hulet, R.G.; Hilfer, E.S.; Kleppner, D. Inhibited Spontaneous Emission by a Rydberg Atom. Phys. Rev. Lett.
**1985**, 55, 2137. [Google Scholar] [CrossRef] - Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Mok, W.-K.; You, J.-B.; Zhang, W.; Yang, W.-L.; Png, C.E. Control of spontaneous emission of qubits from weak to strong coupling. Phys. Rev. A
**2019**, 99, 053847. [Google Scholar] [CrossRef] [Green Version] - Gu, X.; Kockum, A.F.; Miranowicz, A.; Liu, Y.-X.; Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep.
**2017**, 718–719, 1–102. [Google Scholar] [CrossRef] - Lambropoulus, P.; Nikolopoulos, G.M.; Nielse, T.R.; Bay, S. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys.
**2000**, 63, 455. [Google Scholar] [CrossRef] - John, S.; Quang, T. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A
**1994**, 50, 1764. [Google Scholar] [CrossRef] - Lodahl, P.; Floris van Driel, A.I.; Nikolaev, S.; Irman, A.; Overgaag, K.; Vanmaekelbergh, D.; Vos, W.L. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature
**2004**, 430, 654. [Google Scholar] [CrossRef] [PubMed] - Newman, W.D.; Cortes, C.L.; Jacob, Z. Enhanced and directional single-photon emission in hyperbolic metamaterials. J. Opt. Soc. Am. B
**2013**, 30, 766–775. [Google Scholar] [CrossRef] [Green Version] - Lewenstein, M.; Mossberg, T.W.; Glauber, R.J. Dynamical Suppression of Spontaneous Emission. Phys. Rev. Lett.
**1987**, 59, 775. [Google Scholar] [CrossRef] [PubMed] - Drexhage, K.H. Interaction of Light with Monomolecular Dye Lasers. In Progress in Optics; Wolf, E., Ed.; North-Holland: Amsterdam, The Netherlands, 1974; Volume 12, p. 163. [Google Scholar]
- Goy, P.; Raimond, J.M.; Gross, M.; Haroche, S. Observation of Cavity-Enhanced Single-Atom Spontaneous Emission. Phys. Rev. Lett.
**1983**, 50, 1903. [Google Scholar] [CrossRef] - Heinzen, D.J.; Feld, M.S. Vacuum Radiative Level Shift and Spontaneous-Emission Linewidth of an Atom in an Optical Resonator. Phys. Rev. Lett.
**1987**, 59, 2623. [Google Scholar] [CrossRef] - Eschner, J.; Raab, C.; Schmidt-Kaler, F.; Blatt, R. Light interference from single atoms and their mirror images. Nature
**2001**, 413, 495. [Google Scholar] [CrossRef] - Noda, S.; Fujita, M.; Atano, T. Spontaneous emission control by photonic crystals and nanocavieties. Nat. Photonics
**2007**, 1, 449. [Google Scholar] [CrossRef] - Shahmoon, E.; Kurizki, G. Dispersion forces inside metallic waveguides. Phys. Rev. A
**2013**, 87, 062105. [Google Scholar] [CrossRef] [Green Version] - Shahmoon, E.; Mazets, I.; Kurizki, G. Giant vacuum forces via trasmission lines. Proc. Natl. Acad. Sci. USA
**2014**, 111, 10485. [Google Scholar] [CrossRef] - Incardone, R.; Fukuta, T.; Tanaka, S.; Petrosky, T.; Rizzuto, L.; Passante, R. Enhanced resonant force between two entangled identical atoms in a photonic crystal. Phys. Rev. A
**2014**, 89, 062117. [Google Scholar] [CrossRef] - Haakh, H.R.; Scheel, S. Modified and controllable dispersion interaction in a one-dimensional waveguide geometry. Phys. Rev. A
**2015**, 91, 052707. [Google Scholar] [CrossRef] - Notararigo, V.; Passante, R.; Rizzuto, L. Resonance interaction energy between two entangled atoms in a photonic bandgap environment. Sci. Rep.
**2018**, 8, 5193. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fiscelli, G.; Rizzuto, L.; Passante, R. Resonance energy transfer between two atoms in a conducting cylindrical waveguide. Phys. Rev. A
**2018**, 98, 013849. [Google Scholar] [CrossRef] [Green Version] - Dodonov, V.V. Current status of the dynamical Casimir effect. Phys. Scr.
**2010**, 82, 038105. [Google Scholar] [CrossRef] - Crocce, M.; Dalvit, D.A.R.; Mazzitelli, F.D. Quantum electromagnetic field in a three-dimensional oscillating cavity. Phys. Rev. A
**2002**, 66, 033811. [Google Scholar] [CrossRef] [Green Version] - Antezza, M.; Braggio, C.; Carugno, G.; Noto, A.; Passante, R.; Rizzuto, L.; Ruoso, G.; Spagnolo, S. Optomechanical Rydberg-atom excitation via dynamical Casimir–Polder excitation. Phys. Rev. Lett.
**2014**, 113, 023601. [Google Scholar] [CrossRef] - Souza, R.M.; Impens, F.; Maia Neto, P.A. Microscopic dynamical Casimir effect. Phys. Rev. A
**2018**, 97, 032514. [Google Scholar] [CrossRef] [Green Version] - Johansson, J.R.; Johansson, G.; Wilson, C.M.; Nori, F. Dynamical Casimir Effect in a superconducting coplanar waveguide. Phys. Rev. Lett.
**2009**, 103, 147003. [Google Scholar] [CrossRef] - Wilson, C.M.; Johansson, G.; Pourkabirian, A.; Simoen, M.; Johansson, J.R.; Duty, T.; Nori, F.; Delsing, P. Observation of the dynamical Casimir effect in a superconducting circuit. Nature
**2011**, 479, 376. [Google Scholar] [CrossRef] - Nation, P.D.; Johansson, J.R.; Blencowe, M.P.; Nori, F. Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys.
**2012**, 84, 1. [Google Scholar] [CrossRef] - Di Stefano, O.; Settineri, A.; Macrì, V.; Ridolfo, A.; Stassi, R.; Kockum, A.F.; Savasta, S.; Nori, F. Interaction of mechanical oscillators mediated by the exchange of virtual photon pairs. Phys. Rev. Lett.
**2019**, 122, 030402. [Google Scholar] [CrossRef] [PubMed] - Shresta, S.; Hu, B.L.; Phillips, N.G. Moving atom-field interaction: Correction to the Casimir—Polder effect from coherent backaction. Phys. Rev. A
**2003**, 68, 062101. [Google Scholar] [CrossRef] - Vasile, R.; Passante, R. Dynamical Casimir—Polder energy between an atom and a conducting wall. Phys. Rev. A
**2008**, 78, 032108. [Google Scholar] [CrossRef] - Messina, R.; Vasile, R.; Passante, R. Dynamical Casimir—Polder force on a partially dressed atom near a conducting wall. Phys. Rev. A
**2010**, 82, 062501. [Google Scholar] [CrossRef] - Haakh, H.R.; Henkel, C.; Spagnolo, S.; Rizzuto, L.; Passante, R. Dynamical Casimir—Polder interaction between an atom and surface plasmons. Phys. Rev. A
**2014**, 89, 022509. [Google Scholar] [CrossRef] - Armata, F.; Vasile, R.; Barcellona, P.; Buhmann, S.Y.; Rizzuto, L.; Passante, R. Dynamical Casimir—Polder force between an excited atom and a conducting wall. Phys. Rev. A
**2016**, 94, 042511. [Google Scholar] [CrossRef] - Calajò, G.; Rizzuto, L.; Passante, R. Control of spontaneous emission of a single quantum emitter through a time-modulated photonic-band-gap environment. Phys. Rev. A
**2017**, 96, 023802. [Google Scholar] [CrossRef] [Green Version] - Glaetze, A.W.; Hammerer, K.; Daley, A.J.; Platt, R.; Zoller, P. A single trapped atom in front of an oscillating mirror. Opt. Commun.
**2010**, 283, 758–765. [Google Scholar] [CrossRef] [Green Version] - Braggio, C.; Bressi, G.; Carugno, G.; Del Noce, C.; Galeazzi, G.; Lombardi, A.; Palmieri, A.; Ruoso, G.; Zanello, D. A novel experimental approach for the detection of the dynamical Casimir effect. Europhys. Lett.
**2005**, 70, 754. [Google Scholar] [CrossRef] - Agnesi, A.; Braggio, C.; Bressi, G.; Carugno, G.; Della Valle, F.; Galeazzi, G.; Messineo, G.; Pirzio, F.; Reali, G.; Ruoso, G.; et al. MIR: An experiment for the measurement of the dynamical Casimir effect. J. Phys. Conf. Ser.
**2009**, 161, 012028. [Google Scholar] [CrossRef] - Reinhard, A.; Younge, K.C.; Liebisch, T.C.; Knuffman, B.; Berman, P.R.; Raithel, G. Double-Resonance Spectroscopy of Interacting Rydberg-Atom Systems. Phys. Rev. Lett.
**2008**, 100, 233201. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Compagno, G.; Passante, R.; Persico, F. Atom-Field Interactions and Dressed Atoms; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Craig, D.P.; Thirunamachandran, T. Molecular Quantum Electrodynamics; Dover: Mineola, NY, USA, 1998. [Google Scholar]
- Salam, A. Molecular Quantum Electrodynamics in the Heisenberg Picture: A Field Theoretic Viewpoint. Int. Rev. Phys. Chem.
**2008**, 27, 405–448. [Google Scholar] [CrossRef] - Passante, R. Dispersion Interactions between Neutral Atoms and the Quantum Electrodynamical Vacuum. Symmetry
**2018**, 10, 735. [Google Scholar] [CrossRef] - Power, E.A.; Thirunamachandran, T. Quantum electrodynamics in a cavity. Phys. Rev. A
**1982**, 25, 2473. [Google Scholar] [CrossRef] - Gallagher, T.F. Rydberg atoms. Rep. Prog. Phys.
**1988**, 51, 143. [Google Scholar] [CrossRef] - Pillet, P.; Vogt, T.; Viteau, M.; Chotia, A.; Zhao, J.; Comparat, D.; Gallagher, T.F.; Tate, D.; Gaëtan, A.; Miroshnychenko, Y.; et al. Controllable interactions between Rydberg atoms and ultracold plasmas. J. Phys. Conf. Ser.
**2000**, 194, 012066. [Google Scholar] [CrossRef] - Barredo, D.; Lienhard, V.; Scholl, P.; de Léséleuc, S.; Boulier, T.; Browaeys, A.; Lahaye, T. Three-dimensional trapping of individual Rydberg atoms in ponderomotive bottle beam traps. arXiv
**2019**, arXiv:1908.00853. [Google Scholar] - Thompson, J.D.; Tiecke, T.G.; de Leon, N.P.; Feist, J.; Akimov, A.V.; Gullans, M.; Zibrov, A.S.; Vuletić, V.; Lukin, M.D. Coupling a single trapped atom to a nanoscale optical cavity. Science
**2013**, 340, 1202–1205. [Google Scholar] [CrossRef]

**Figure 1.**Sketch of the system: one atom, modelled as a two-level system, is placed in front an oscillating mirror. The atomic dipole moment can be oriented parallel or perpendicular to the oscillating reflecting plane.

**Figure 2.**Plot of the spectrum ${P}_{{\omega}_{k}}({\omega}_{p},t)$ of emitted radiation from an atom near an oscillating mirror, in arbitrary units, in terms of ${\omega}_{k}-{\omega}_{0}$. The two lateral peaks in the photon spectrum are symmetric, and separated from the atomic transition frequency by the oscillation frequency of the plate (in the figure, ${\omega}_{p}=1.5\times {10}^{8}\phantom{\rule{0.166667em}{0ex}}$s${}^{-1}$; the other numerical values of the relevant parameters are: ${\omega}_{0}={10}^{15}\phantom{\rule{0.166667em}{0ex}}$s${}^{-1}$, ${z}_{0}={10}^{-6}\phantom{\rule{0.166667em}{0ex}}$ m; $a=2\times {10}^{-7}\phantom{\rule{0.166667em}{0ex}}$ m; $t={10}^{-6}\phantom{\rule{0.166667em}{0ex}}$s).

**Figure 3.**Spectral density of the emitted radiation, in arbitrary units, in terms of ${\omega}_{k}-{\omega}_{0}$ and time t, with ${\omega}_{p}=1.5\times {10}^{9}\phantom{\rule{0.166667em}{0ex}}$s${}^{-1}$. The figure shows that the lateral peaks become more and more evident as time goes on, specifically when $t\gg 2\pi {\omega}_{p}^{-1}$. The other parameters are: ${\omega}_{0}={10}^{15}\phantom{\rule{0.166667em}{0ex}}$s${}^{-1}$, ${z}_{0}={10}^{-6}$ m; $a=2\times {10}^{-7}\phantom{\rule{0.166667em}{0ex}}$m.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ferreri, A.; Domina, M.; Rizzuto, L.; Passante, R.
Spontaneous Emission of an Atom Near an Oscillating Mirror. *Symmetry* **2019**, *11*, 1384.
https://doi.org/10.3390/sym11111384

**AMA Style**

Ferreri A, Domina M, Rizzuto L, Passante R.
Spontaneous Emission of an Atom Near an Oscillating Mirror. *Symmetry*. 2019; 11(11):1384.
https://doi.org/10.3390/sym11111384

**Chicago/Turabian Style**

Ferreri, Alessandro, Michelangelo Domina, Lucia Rizzuto, and Roberto Passante.
2019. "Spontaneous Emission of an Atom Near an Oscillating Mirror" *Symmetry* 11, no. 11: 1384.
https://doi.org/10.3390/sym11111384