On Matrix Completion-Based Channel Estimators for Massive MIMO Systems
Abstract
:1. Introduction
2. System Model
3. Compressive Sensing-Based Channel Estimation
4. Matrix Completion-Based Channel Estimation
4.1. MC Estimators
4.1.1. SVT Estimator
Algorithm 1 SVT Estimator |
Require: , , , , , . |
|
4.1.2. FPC Estimator
- We can set the step size according to [26], where is the maximum eigenvalue;
- decreases as
Algorithm 2 FPC Estimator |
Require: , , , , , and |
|
4.1.3. SVP Estimator
Algorithm 3 SVP Estimator |
Require: , L, , |
|
4.1.4. GCG-Alt Estimator
Algorithm 4 GCG-Alt Estimator |
Require: |
4.2. MC-Based Hybrid Estimators
4.2.1. ADMM Estimator
- with in Step 3;
- denotes the vectorization of , and similarly for other variables;
- where is composed of N ones and zeros, the value 1 indicates the position of a sample from the channel matrix, and denotes the i-th row of , and is the matrix that the value at its -th position is 1 and the remaining position is 0 [17];
- The parameters in Equation (20) are chosen empirically as and , where is the noise power.
Algorithm 5 ADMM Estimator |
Require: , t, , , , , , . |
|
4.2.2. Two-Stage Estimator
- The parameters of the first stage, SVT, is the same with Algorithm 1;
- ;
- is a constant stepsize, e.g., ;
- is the top eigenvalue of .
Algorithm 6 Two-Stage Estimator |
Require: |
|
5. Numerical Results
- OMP: The unitary dictionary is set with and . The stopping threshold is set as with [20];
- SVT: , , , , and ;
- SVP: and ;
- FPC: , , , , and ;
- GCG-Alt: , , and ;
- ADMM: , , , ;
- Two-Stage: , .
5.1. Comparison of NMSE When There Are No Hardware Impairments
5.2. NMSE Comparison When There Are Hardware Impairments
5.3. Computational Complexity
5.4. Performance with Line of Sight (LoS) Propagation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE 2014, 102, 366–385. [Google Scholar] [CrossRef]
- Rebeiz, G. Large-scale millimeter-wave phased arrays for 5g systems. In Proceedings of the IEEE 16th Topical Meeting Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Austin, TX, USA, 24–27 January 2016. [Google Scholar]
- Rappaport, T.S.; Heath, R.W.; Daniels, R.C.; Murdock, J. Millimeter Wave Wireless Communications; Prentice-Hall: Englewood Cliffs, NJ, USA, 2014. [Google Scholar]
- Heath, R.W.; González-Prelcic, N.; Rangan, S.; Roh, W.; Sayeed, A.M. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [Google Scholar] [CrossRef]
- Wei, L.; Hu, R.; Qian, Y.; Wu, G. Key elements to enable millimeter wave communications for 5g wireless systems. IEEE Wirel. Commun. 2014, 21, 136–143. [Google Scholar]
- Eldar, Y.C.; Kutyniok, G. Compressed Sensing; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Lee, J.; Gil, G.T.; Lee, Y.H. Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Trans. Commun. 2016, 64, 2370–2386. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Ayach, O.E.; Leus, G.; Heath, R.W. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 831–846. [Google Scholar] [CrossRef]
- Gao, Z.; Dai, L.; Wang, Z.; Chen, S. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Trans. Signal Process. 2015, 63, 6169–6183. [Google Scholar] [CrossRef]
- Sun, S.; Rappaport, T.S. Millimeter wave MIMO channel estimation based on adaptive compressed sensing. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 47–53. [Google Scholar]
- Xiao, Z.; Yin, C.; Xia, P.; Xia, X. Codebook design for millimeter-wave channel estimation with hybrid precoding structure. IEEE Trans. Wirel. Commun. 2017, 16, 141–153. [Google Scholar] [CrossRef]
- Zhu, D.; Choi, J.; Heath, R.W. Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO systems. IEEE Trans. Wirel. Commun. 2017, 16, 4770–4785. [Google Scholar] [CrossRef]
- Gurbuz, A.C.; Yapici, Y.; Guvenc, I. Sparse channel estimation in millimeter-wave communications via parameter perturbed OMP. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef]
- Eliasi, P.A.; Rangan, S.; Rappaport, T.S. Low-rank spatial channel estimation for millimeter wave cellular systems. IEEE Trans. Wirel. Commun. 2017, 16, 2748–2759. [Google Scholar] [CrossRef]
- Li, X.; Fang, J.; Li, H.; Wang, P. Millimeter wave channel estimation via exploiting joint sparse and low-rank structures. IEEE Trans. Wirel. Commun. 2018, 17, 1123–1133. [Google Scholar] [CrossRef]
- Vlachos, E.; Alexandropoulos, G.C.; Thompson, J. Massive MIMO channel estimation for millimeter wave systems via matrix completion. IEEE Signal Process. Lett. 2018, 25, 1675–1679. [Google Scholar] [CrossRef]
- Sun, J.; Lu, J.; Liang, G.; Bi, J. A sparse interactive model for matrix completion with side information. Adv. Neural Inf. Process. Syst. 2016, 29, 4071–4079. [Google Scholar]
- Hu, R.; Tong, J.; Xi, J.; Guo, Q.; Yu, Y. Robust channel estimation for switch-based mmWave MIMO systems. In Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017; pp. 1–7. [Google Scholar]
- Hu, R.; Tong, J.; Xi, J.; Guo, Q.; Yu, Y. Matrix completion-based channel estimation for MmWave communication systems with array-inherent impairments. IEEE Access 2018, 6, 62915–62931. [Google Scholar] [CrossRef]
- Akdeniz, M.R.; Liu, Y.; Samimi, M.K.; Sun, S.; Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 2014, 32, 1164–1179. [Google Scholar] [CrossRef]
- Jain, P.; Meka, R.; Dhillon, I.S. Guaranteed rank minimization via singular value projection. In Proceedings of the 23rd International Conference on Neural Information Processing Systems, Vancouver, BC, USA, 6–9 December 2010; pp. 937–945. [Google Scholar]
- Yu, Y.; Carbonell, J.; Yu, A.W.; Ma, W.; Sra, S. Efficient structured matrix rank minimization. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS 2014), Montreal, QC, USA, 8–13 December 2014; pp. 1350–1358. [Google Scholar]
- Yu, X.; Shen, J.C.; Zhang, J.; Letaief, K.B. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [Google Scholar] [CrossRef]
- Cai, J.F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Ma, S.; Goldfarb, D.; Chen, L. Fixed point and bregman iterative methods for matrix rank minimization. Math. Program. 2009, 128, 321–353. [Google Scholar] [CrossRef]
- Xia, P.; Yong, S.K.; Oh, J.; Ngo, C. A practical SDMA protocol for 60 GHz millimeter wave communications. In Proceedings of the 2008 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 26–29 October 2008; pp. 2019–2023. [Google Scholar]
- Forenza, A.; Love, D.J.; Heath, R.W. Simplified spatial correlation models for clustered MIMO channels with different array configurations. IEEE Trans. Veh. Technol. 2007, 56, 1924–1934. [Google Scholar] [CrossRef]
- Rial, R.M.; Rusu, C.N.; Prelcic, G.; Alkhateeb, A.; Heath, R.W. Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access 2016, 4, 247–267. [Google Scholar] [CrossRef]
- Bajwa, W.U.; Haupt, J.; Sayeed, A.M.; Nowak, R. Compressed channel sensing: A new approach to estimating sparse multipath channels. Proc. IEEE 2010, 98, 1058–1076. [Google Scholar] [CrossRef]
- Brady, J.; Behdad, N.; Sayeed, A.M. Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements. IEEE Trans. Antennas Propag. 2013, 61, 3814–3827. [Google Scholar] [CrossRef]
- Candes, E.J.; Plan, Y. Matrix completion with noise. Proc. IEEE 2010, 98, 925–936. [Google Scholar] [CrossRef]
- Weng, Z.; Wang, X. Low-rank matrix completion for array signal processing. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 2697–2700. [Google Scholar]
- Hale, E.T.; Yin, W.; Zhang, Y. Fixed-point continuation for ℓ1-minimization: Methodology and convergence. SIAM J. Optim. 2008, 19, 1107–1130. [Google Scholar] [CrossRef]
- Larsen, R.M. Propack-Software for Large and Sparse svd Calculations. Available online: http://sun.stanford.edu/~rmunk/PROPACK/ (accessed on 1 October 2019).
- Chiang, K.Y.; Hsieh, C.; Dhillon, I.S. Matrix completion with noisy side information. Adv. Neural Inf. Proc. Syst. 2015, 28, 3447–3455. [Google Scholar]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Park, S.; Park, J.; Yazdan, A.; Heath, R.W. Exploiting spatial channel covariance for hybrid precoding in massive MIMO systems. IEEE Trans. Signal Process. 2017, 65, 3818–3832. [Google Scholar] [CrossRef]
- Groschel, P.; Zarei, S.; Carlowitz, C.; Lipka, M.; Sippel, E.; Ali, A.; Weigel, R.; Schober, R.; Vossiek, M. A system concept for online calibration of massive MIMO transceiver arrays for communication and localization. IEEE Trans. Microw. Theory Technol. 2017, 65, 1735–1750. [Google Scholar] [CrossRef]
- Liu, L.; Hong, W.; Wang, H.; Yang, G.; Zhang, N.; Zhao, H.; Chang, J.; Yu, C.; Yu, X.; Tang, H.; et al. Characterization of Line-of-Sight MIMO Channel for Fixed Wireless Communications. IEEE Antennas Wirel. Prop. Lett. 2007, 6, 36–39. [Google Scholar] [CrossRef]
- Xue, C.; He, S.; Ou, F.; Wei, M.; Huang, Y.; Yang, L. Asymmetric Subarray Structure Design for mmWave LoS MIMO Communication Systems. In Proceedings of the 2016 IEEE/CIC International Conference on Communications in China (ICCC), Chengdu, China, 27–29 July 2016. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, M.; Yang, X.; Hu, R.; Xiao, Z.; Tong, J.; Xi, J. On Matrix Completion-Based Channel Estimators for Massive MIMO Systems. Symmetry 2019, 11, 1377. https://doi.org/10.3390/sym11111377
Ding M, Yang X, Hu R, Xiao Z, Tong J, Xi J. On Matrix Completion-Based Channel Estimators for Massive MIMO Systems. Symmetry. 2019; 11(11):1377. https://doi.org/10.3390/sym11111377
Chicago/Turabian StyleDing, Mingjun, Xiaodong Yang, Rui Hu, Zhitao Xiao, Jun Tong, and Jiangtao Xi. 2019. "On Matrix Completion-Based Channel Estimators for Massive MIMO Systems" Symmetry 11, no. 11: 1377. https://doi.org/10.3390/sym11111377
APA StyleDing, M., Yang, X., Hu, R., Xiao, Z., Tong, J., & Xi, J. (2019). On Matrix Completion-Based Channel Estimators for Massive MIMO Systems. Symmetry, 11(11), 1377. https://doi.org/10.3390/sym11111377