# About Chirality in Minkowski Spacetime

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Results

**Proposition**

**1.**

**Proposition**

**2.**

## 3. Methods

**Lemma**

**1.**

**Proof.**

**Theorem**

**1.**

**Proof.**

**Corollary**

**1.**

**Proof.**

**Theorem**

**2.**

**Proof.**

**Corollary**

**2.**

**Proof.**

## 4. Discussion and Conclusions

- Direct isometries: spatial rotations and boosts.
- Mirrors (involutions): parity inversion P, time reversal T, and their commutative composition, $PT$.

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Ecker, G. Chiral Perturbation Theory. Prog. Part. Nucl. Phys.
**1995**, 35, 1–80. [Google Scholar] [CrossRef] - Mezey, P.G. (Ed.) New Developments in Molecular Chirality; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Francotte, E.; Lindner, W. (Eds.) Chirality in Drug Research; Wiley: Weinheim, Germany, 2006. [Google Scholar]
- Brown, C. (Ed.) Chirality in Drug Design and Synthesis; Academic Press: London, UK, 1990. [Google Scholar]
- Wagnière, G.H. On Chirality and the Universal Asymmetry; Wiley: Weinheim, Germany, 2007. [Google Scholar]
- Cintas, P. (Ed.) Biochirality, Origins, Evolution and Molecular Recognition; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Pályi, G.; Zucchi, C.; Caglioti, L. (Eds.) Progress in Biological Chirality; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Bouissou, C.; Petitjean, M. Asymmetric Exchanges. J. Interdisc. Methodol. Iss. Sci.
**2018**, 4, 1–18. Available online: https://hal.archives-ouvertes.fr/hal-01782438 (accessed on 17 October 2019). - Kelvin, L. The Molecular Tactics of a Crystal; Clarendon Press: Oxford, UK, 1894; section 22, footnote p. 27. [Google Scholar]
- Prelog, V. Chirality in chemistry. Nobel Lect.
**1975**. Available online: https://www.nobelprize.org/uploads/2018/06/prelog-lecture.pdf (accessed on 17 October 2019). - Whyte, L.L. Chirality. Nature
**1958**, 182, 198. [Google Scholar] [CrossRef] - Barron, L.D. True and false chirality and parity violation. Chem. Phys. Lett.
**1986**, 123, 423–427. [Google Scholar] [CrossRef] - Barron, L.D. True and false chirality and absolute enantioselection. Rend. Fis. Acc. Lincei
**2013**, 24, 179–189. [Google Scholar] [CrossRef] - Mislow, K. Molecular chirality. Top. Stereochem.
**1999**, 22, 1–82. [Google Scholar] - Cintas, P. Chirality and chemical processes: A few afterthoughts. Chirality
**2008**, 20, 2–4. [Google Scholar] [CrossRef] [PubMed] - Hori, K.; Katz, S.; Klemm, A.; Pandharipande, R.; Thomas, R.; Vafa, C.; Vakil, R.; Zaslow, E. Introduction. In Mirror Symmetry; Clay Mathematics Monographs; American Mathematical Society: Cambridge, MA, USA, 2003; Volume 1, p. xvi. [Google Scholar]
- Petitjean, M. A definition of symmetry. Symmetry Cult. Sci.
**2007**, 18, 99–119. Available online: https://hal.archives-ouvertes.fr/hal-01552499 (accessed on 17 October 2019). - Petitjean, M. Chirality in metric spaces. In memoriam Michel Deza. Optim. Lett.
**2017**, 1–10. [Google Scholar] [CrossRef] - Petitjean, M. Chirality in metric spaces. Symmetry Cult. Sci.
**2010**, 21, 27–36. [Google Scholar] [CrossRef] - Moshe, C. General Relativity. Representations of the Lorentz Group and Their Applications to the Gravitational Field; Imperial College Press: Singapore, 2000; Chapter 2, Section 2.1; pp. 20–22. [Google Scholar]
- Müller-Kirsten, H.J.W.; Wiedemann, A. Introduction to Supersymmetry, 2nd ed.; Lecture Notes in Physics; World Scientific: Singapore, 2010; Volume 80, Chapter 1; p. 22. [Google Scholar]
- Ungar, A.A. Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett.
**1988**, 1, 57–89. [Google Scholar] [CrossRef] - Kennedy, W.L. Thomas rotation: A Lorentz matrix approach. Eur. J. Phys.
**2002**, 23, 235–247. [Google Scholar] [CrossRef] - Whitelaw, T.A. Introduction to Abstract Algebra; Chapman & Hall/CRC: Boca Raton, FL, USA, 1995; Section 44.5; p. 99. [Google Scholar]
- Hübsch, T. Linear and chiral superfields are usefully inequivalent. Class. Quantum Grav.
**1999**, 16, L51–L54. [Google Scholar] [CrossRef] - Petitjean, M. Chirality and symmetry measures: A transdisciplinary review. Entropy
**2003**, 5, 271–312. [Google Scholar] [CrossRef] - Petitjean, M. Chiral mixtures. J. Math. Phys.
**2002**, 43, 4147–4157. [Google Scholar] [CrossRef] [Green Version] - Petitjean, M. On the root mean square quantitative chirality and quantitative symmetry measures. J. Math. Phys.
**1999**, 40, 4587–4595. [Google Scholar] [CrossRef] [Green Version] - Petitjean, M. From shape similarity to shape somplementarity: Toward a docking theory. J. Math. Chem.
**2004**, 35, 147–158. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Petitjean, M.
About Chirality in Minkowski Spacetime. *Symmetry* **2019**, *11*, 1320.
https://doi.org/10.3390/sym11101320

**AMA Style**

Petitjean M.
About Chirality in Minkowski Spacetime. *Symmetry*. 2019; 11(10):1320.
https://doi.org/10.3390/sym11101320

**Chicago/Turabian Style**

Petitjean, Michel.
2019. "About Chirality in Minkowski Spacetime" *Symmetry* 11, no. 10: 1320.
https://doi.org/10.3390/sym11101320