# Tribonacci Numbers and Some Related Interesting Identities

^{*}

## Abstract

**:**

## 1. Introduction

**Theorem**

**1.**

**Corollary**

**1.**

**Corollary**

**2.**

**Corollary**

**3.**

## 2. A Simple Lemma

**Lemma**

**1.**

**Proof.**

## 3. Proof of the Theorem

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Ma, Y.K.; Zhang, W.P. Some identities involving Fibonacci polynomials and Fibonacci numbers. Mathematics
**2018**, 6, 334. [Google Scholar] [CrossRef] - Kim, T.; Dolgy, D.; Kim, D.; Seo, J. Convolved Fibonacci numbers and their applications. ARS Comb.
**2017**, 135, 119–131. [Google Scholar] - Chen, Z.Y.; Qi, L. Some convolution formulae related to the second-order linear recurrence sequence. Symmetry
**2019**, 11, 788. [Google Scholar] [CrossRef] - Agoh, T.; Dilcher, K. Convolution identities and laucunary recurrences for Bernoulli numbers. J. Number Theory
**2007**, 124, 105–122. [Google Scholar] [CrossRef] - Agoh, T.; Dilcher, K. Higher-order convolutions for Bernoulli numbers. J. Number Theory
**2009**, 129, 1837–1847. [Google Scholar] [CrossRef] - Agoh, T.; Dilcher, K. Higher-order convolutions for Bernoulli and Euler polynomials. J. Math. Anal. Appl.
**2014**, 419, 1235–1247. [Google Scholar] [CrossRef] - Chen, L.; Zhang, W.P. Chebyshev polynomials and their some interesting applications. Adv. Differ. Equ.
**2017**, 2017, 303. [Google Scholar] - Kim, T.; Dolgy, D.V.; Kim, D.S. Representing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials in terms of Chebyshev polynomials. Adv. Stud. Contemp. Math.
**2018**, 28, 321–336. [Google Scholar] - Kaygisiz, K.; Sahin, A. Determinantal and permanental representations of Fibonacci type numbers and polynomials. Rocky Mt. J. Math.
**2016**, 46, 227–242. [Google Scholar] [CrossRef] - Li, X.X. Some identities involving Chebyshev polynomials. Math. Probl. Eng.
**2015**, 2015, 950695. [Google Scholar] [CrossRef] - Ma, Y.K.; Li, X.X. Several identities involving the reciprocal sums of Chebyshev polynomials. Math. Probl. Eng.
**2017**, 2017, 4194579. [Google Scholar] [CrossRef] - Trucco, E. On Fibonacci polynomials and wandering domains. Bull. Lond. Math. Soc.
**2015**, 47, 663–674. [Google Scholar] [CrossRef] - Wu, Z.G.; Zhang, W.P. Several identities involving the Fibonacci polynomials and Lucas polynimials. J. Inequal. Appl.
**2013**, 2013, 205. [Google Scholar] [CrossRef] - Wang, T.T.; Zhang, H. Some identities involving the derivative of the first kind Chebyshev polynomials. Math. Probl. Eng.
**2015**, 2015, 146313. [Google Scholar] [CrossRef] - Yi, Y.; Zhang, W.P. Some identities involving the Fibonacci polynomials. Fibonacci Q.
**2002**, 40, 314–318. [Google Scholar] - Zhang, W.P.; Wang, H. Generalized Humbert polynomials via generalized Fibonacci polynomials. Appl. Math. Comput.
**2017**, 307, 204–216. [Google Scholar] - Zhang, Y.X.; Chen, Z.Y. A new identity involving the Chebyshev polynomials. Mathematics
**2018**, 6, 244. [Google Scholar] [CrossRef] - Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. Available online: http://oeis.org (accessed on 31 August 2019).
- Komatsu, T. On the sum of reciprocal Tribonacci numbers. ARS Comb.
**2011**, 98, 447–459. [Google Scholar] - Komatsu, T. Convolution identities for Tribonacci numbers. ARS Comb.
**2018**, 136, 447–459. [Google Scholar] - Kilic, E. Tribonacci sequences with certain indices and their sums. ARS Comb.
**2008**, 86, 13–22. [Google Scholar] - Komatsu, T.; Li, R.S. Convolution identities for Tribonacci numbers with symmetric formulae. Math. Rep.
**2019**, 71, 27–47. [Google Scholar] - Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhou, S.; Chen, L.
Tribonacci Numbers and Some Related Interesting Identities. *Symmetry* **2019**, *11*, 1195.
https://doi.org/10.3390/sym11101195

**AMA Style**

Zhou S, Chen L.
Tribonacci Numbers and Some Related Interesting Identities. *Symmetry*. 2019; 11(10):1195.
https://doi.org/10.3390/sym11101195

**Chicago/Turabian Style**

Zhou, Shujie, and Li Chen.
2019. "Tribonacci Numbers and Some Related Interesting Identities" *Symmetry* 11, no. 10: 1195.
https://doi.org/10.3390/sym11101195