The Ambiguity in the Definition and Behavior of the Gravitational and Cosmological ‘Coupling Constants’ in the Theory of Induced Gravity
Abstract
:1. Introduction
1.1. Introduction to the Original Theory
1.2. Different Types of Solutions
2. Cosmological Solutions
2.1. Cosmological Vacuum Solutions. Y = const
2.2. Cosmological Solutions with Matter
2.3. The Case without Quadratic Terms
2.4. Oscillating Solutions. Influence of Quadratic Terms
3. Centrally Symmetric Solutions
3.1. Analysis of Equations in Centrally Symmetric Space
3.2. Numerical Solution of Equations for the “Conditional Sun” Model
3.3. Numerical Solution of Equations for the Model of “Galaxy”
3.4. General Characteristics of the Models. Attempt to Reconcile
4. Conclusions
The MTIG model is proposed for a macroscopic description of gravity and cosmology, which (possibly) is capable of solving problems 1–3, given at the beginning of the article, and motivating to further experiments. We propose the working hypothesis according to which the physical parameters associated with gravitation, such as the gravitational and cosmological “constants”—G and , the Hubble “constant” H, in addition to monotonic evolution, fluctuate about their mean values. Because of the implementation of the two branches of solutions, these fluctuations can contain elements of stochasticity. This hypothesis is realized in the mathematical model considered in this article.
The solutions of the MTIG equations for the case of a centrally symmetric gravitational field, in addition to the Schwarzschild-de Sitter solutions (for ), contain solutions that lead to new physical effects at large distances from the center. For distances greater than a certain critical value, the following effects can appear (depending on the value of the parameters of the theory): deviation from the law of gravitational interaction of general relativity and its Newtonian approximation, antigravity, absence of asymptotic flatness at infinity. The responsibility for these effects (in the first place) carries not an integration constant that corresponds to the mass of a physical body, but some other (dimensionless) charge , which is brought into the theory as the boundary value of the field at the center of symmetry (), different from the (vacuum) mean value () of field Z. The mass affects the value of the critical radius, the charge affects the amplitude of the deviation, affects the oscillation frequency. We consider the hypothesis that the parameter is the same for all objects, and the charge is different for local objects (stars, galaxies, clusters…).
Thus, the flat asymptotics (the asymptotics of the field at large distances in the Newton and Schwarzschild theory) becomes unstable and can enter the oscillatory regime with the elements of of chaotic behavior. The mean oscillation frequency depends on the value of , which depends on the vacuum polarization energy density. Near the center, the influence of mass predominates and the laws of general relativity and Newton’s law of universal gravitation (for the weak field) are approximately fulfilled. At sufficiently large distances (greater than critical) these solutions pass into other solutions, where the influence of and prevails. (Because of the nonlinearity of the theory, such allocation of roles of the parameters, based on computer experiments, is conditional (approximate)).
5. Discussion
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
MTIG | Modified Theory of Induced Gravity |
References
- Weinberg, C.S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Speake, C.; Quinn, T. The search for Newton’s constant. Phys. Today 2014, 67, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Rosi, G.; Sorrentino, F.; Cacciapuoti, L.; Prevedelli, M.; Tino, G.M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 2014, 510, 518–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Qing, L.; Chao, X.; Qi, L.; Hao, X.; Hu, Z.-K.; Wu, S.-C.; Milyukov, V. Measurements of the gravitational constant using two independent method. Nature 2018, 560, 582–588. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Anderson, J.; Mackenty, J.W.; Bowers, J.B.; Clubb, K.I.; Filippenko, A.V.; Jones, D.O.; et al. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant. arXiv, 2018; arXiv:1801.01120. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. Determination of the Local Value of the Hubble Constant. Astrophys. J. 2016. [Google Scholar] [CrossRef]
- Planck, C.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck intermediate results XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth. Astron. Astrophys. 2016, 596, A107. [Google Scholar] [CrossRef]
- De Rham, C.; Hofmann, S.; Khoury, J.; Tolley, A.J. Cascading Gravity and Degravitation. arXiv, 2007; arXiv:0712.2821. [Google Scholar]
- Dvali, G.R.; Gabadadze, G.; Porrati, M. 4D Gravity on a Brane in 5D Minkowski Space. Phys. Lett. B 2000, 485, 208–214. [Google Scholar] [CrossRef]
- Dvali, G.R.; Gabadadze, G. Gravity on a Brane in Infinite-Volume Extra Space. Phys. Rev. D 2001, 63, 065007–065020. [Google Scholar] [CrossRef]
- Dvali, G.R.; Hofmann, S.; Khoury, J. Degravitation of the Cosmological Constant and Graviton Width. Phys. Rev. D 2007, 76, 084006. [Google Scholar] [CrossRef]
- Ravanpak, A.; Farajollahi, H.; Fadakar, G.F. Probing Lambda-DGP Braneworld Model. Astron. Astrophys. 2016, 16, 137. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.; Gabadadze, G. Non-Local Modification of Gravity and the Cosmological Constant Problem. arXiv, 2002; arXiv:0209227. [Google Scholar]
- Mishra, S.S.; Sahni, V.; Shtanov, Y. Sourcing Dark Matter and Dark Energy from α-attractors. arXiv, 2017; arXiv:1703.03295. [Google Scholar]
- Sahni, V.; Starobinsky, A.A. The case for a positive cosmological Λ-term. Int. J. Mod. Phys. D 2000, 9, 373–443. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Cosmological constant—The weight of the vacuum. Phys. Rep. 2003, 380, 235–320. [Google Scholar] [CrossRef]
- Sahni, V.; Starobinsky, A.A. Reconstructing Dark Energy. Phys. D 2006, 15, 2105–2132. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef]
- Bousso, R. The cosmological constant. Gen. Relativ. Gravit. 2008, 40, 607–637. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Universality Class in Conformal Inflation. J. Cosmol. Astropart. Phys. 2013, 1307, 002. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Multi-field Conformal Cosmological Attractors. arXiv, 2015; arXiv:1309.2015. [Google Scholar]
- Zaripov, F.S. A conformally invariant generalization of string theory to higher-dimensional objects. Hierarchy of coupling constants. Gravit. Cosmol. 2007, 13, 273–281. [Google Scholar]
- Zaripov, F. Modified equations in the theory of induced gravity. Astr. Space Sci. 2014, 352, 289–305. [Google Scholar] [CrossRef]
- Zaripov, F.S. Phenomenological Model of Multiphase Cosmological Scenario in Theory of Induced Gravity. Russ. Phys. J. 2017, 59, 1834–1841. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.I.; Odintsov, S.D. Introduction to Modified Gravity and Gravitational Alternative for Dark Energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115–145. [Google Scholar] [CrossRef]
- Nojiri, S.I.; Odintsov, S.D. Accelerating cosmology in modified gravity: From convenient F(R) or string-inspired theory to bimetric F(R) gravityInt. J. Geom. Methods Mod. Phys. 2014, 11, 1–24. [Google Scholar] [CrossRef]
- Peter, K.; Dunsby, S.; Luongo, O.; Reverberi, L. Dark Energy and Dark Matter from an additional adiabatic fluid. Phys. Rev. D 2016, 94, 083525. [Google Scholar]
- Luongo, O.; Muccino, M. Speeding up the Universe using dust with pressure. Phys. Rev. D 2018, 98, 103520. [Google Scholar] [CrossRef]
- Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D 2012, 86, 123516. [Google Scholar] [CrossRef]
- Sakharov, A.D. Vacuum Quantum Fluctuations In Curved Space And The Theory Of Gravitation. Sov. Phys. Dokl. 1968, 12, 1040. [Google Scholar]
- Visser, M. Sakharov’s Induced Gravity: A Modern Perspective. Mod. Phys. Lett. A 2002, 17, 977. [Google Scholar] [CrossRef]
- Andrianov, A.A.; Andrianov, V.A.; Giacconi, P.; Soldati, R. Induced gravity and universe creation on the domain wall in five-dimensional space-time. Theor. Math. Phys. 2006, 148, 880. [Google Scholar] [CrossRef]
- Linnemann, N.S.; Visser, M.R. Hints towards the Emergent Nature of Gravity. arXiv, 2018; arXiv:1711.10503v2. [Google Scholar]
- Scholz, E. Weyl geometry in late 20th century physics. arXiv, 2011; arXiv:1111.3220v1. [Google Scholar]
- Aalbers, J. Conformal Symmetry in Classical Gravity. 2013. Available online: http://dspace.library.uu.nl/handle/1874/280136 (accessed on 20 November 2018).
- Dengiz, S.; Tekin, B. Higgs Mechanism for New Massive Gravity and Weyl Invariant Extensions of Higher Derivative Theories. Phys. Rev. D 2011, 84, 024033. [Google Scholar] [CrossRef]
- Carballo-Rubio, R. Longitudinal diffeomorphisms obstruct the protection of vacuum energy. Phys. Rev. D 2015, 91, 124071. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.A.; Tronconi, A.; Venturi, G.; Vernov, S.Y. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities. Phys. Rev. D 2016, 94, 063510. [Google Scholar] [CrossRef] [Green Version]
- Bars, I.; James, A. Physical interpretation of antigravity. Phys. Rev. D 2016, 93, 044029. [Google Scholar] [CrossRef] [Green Version]
- Green, M.; Schwarz, J.; Witten, E. Superstring Theory; Cambridge University Press: Cambridge, UK, 1988; p. 518. [Google Scholar]
- Regge, T.; Teitelboim, C. General Relativity à la string: A progress report. In Proceedings of the First Marcel Grossmann Meeting, Trieste, Italy, 7–12 July 1975. [Google Scholar]
- Paston, S.A.; Semenova, A.N. Constraint algebra for Regge-Teitelboim formulation of gravity. Int. J. Theor. Phys. 2010, 49, 2648–2658. [Google Scholar] [CrossRef]
- Sheykin, A.A.; Paston, S.A. The approach to gravity as a theory of embedded surface. AIP Conf. Proc. 2014, 1606, 400. [Google Scholar]
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations, 2nd ed.; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2003; p. 25. [Google Scholar]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- De Rham, C.; Dvali, G.; Hofmann, S.; Khoury, J.; Pujolàs, O.; Redi, M.; Tolley, A.J. Cascading Gravity: Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension. Phys. Rev. Lett. 2008, 100, 251603. [Google Scholar] [CrossRef] [PubMed]
- Capozziello, S.; Luongo, O.; Pincak, R.; Ravanpak, A. Cosmic acceleration in non-flat f(T) cosmology. arXiv, 2018; arXiv:1804.03649. [Google Scholar]
- Zaripov, F.S.H. A conformally invariant sigma-model as generalization of the theory of strings. In Proceedings of the International School-Seminar of a Foundation of the Theory of a Gravitation and Cosmology, Odessa, Ukraine, 4–10 September 1995; p. 35. [Google Scholar]
- Zaripov, F.S. On the stability of the Friedman world with a charged scalar field and with self-action. In Gravitation and Theory of Relativity; KSU, Publishers: Kazan, Russia, 1986; pp. 62–74. (In Russian) [Google Scholar]
- Zaripov, F.S. Generalized equations of induced gravity. The evolution of coupling constants. Vestnik TGGPU 2010, 4, 23–28. (In Russian) [Google Scholar]
- Chervon, S.V.; Zhuravlev, V.M.; Shchigolev, V.K. New exact solutions in standard inflationary models. Phys. Lett. B 1997, 398, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Zhuravlev, V.M.; Chervon, S.V.; Shchigolev, V.K. New Classes of Exact Solutions in Inflationary Cosmology; JETF: New York, NY, USA, 1998; Volume 87, pp. 223–228. [Google Scholar]
- Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L. Efective Action in Quantum Gravity; IOP: Bristol, PA, USA, 1992; p. 413. [Google Scholar]
- Gorbunov, D.; Tokareva, A. Scale-invariance as the origin of dark radiation? Phys. Lett. B 2014, 739, 50–55. [Google Scholar] [CrossRef] [Green Version]
- De Rham, C. Massive Gravity. Living Rev. Relativ. 2014, 17, 1–189. [Google Scholar] [CrossRef] [PubMed]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. arXiv, 2012; arXiv:1106.2476v3. [Google Scholar]
- Lerner, E.J. Observations contradict galaxy size and surface brightness predictions that are based on the expanding universe hypothesis. arXiv, 2018; arXiv:1803.08382. [Google Scholar]
- Coleman, S. Fate of the false vacuum: Semiclassical theory. Phys. Rev. D 1977, 15, 2929–2936. [Google Scholar] [CrossRef]
- Coleman, S.; De Luccia, F. Gravitational effects on and of vacuum decay. Phys. Rev. D 1980, 21, 3305–3315. [Google Scholar] [CrossRef]
- Lee, K.; Weinberg, E.J. Decay of the true vacuum in curved space-time. Phys. Rev. D 1987, 36, 1088–1094. [Google Scholar] [CrossRef]
- Hackworth, J.C.; Weinberg, E.J. Oscillating bounce solutions and vacuum tunneling in de Sitter spacetime. Phys. Rev. D 2004, 71, 044014–044032. [Google Scholar] [CrossRef]
- Masoumi, A.; Paban, S.; Weinberg, E.J. Tunneling from a Minkowski vacuum to an AdS vacuum: A new thin-wall regime. Phys. Rev. D 2016, 94, 025023–025040. [Google Scholar] [CrossRef]
- Linde, A. Inflation, Quantum Cosmology and the Anthropic Principle; Cambridge University Press: Cambridge, UK, 2003; pp. 1–35. [Google Scholar]
- Anderson, J.D.; Laing, P.A.; Lau, E.L.; Nieto, M.M.; Turyshev, S.G. Search for a Standard Explanation of the Pioneer Anomaly. Mod. Phys. Lett. A 2002, 17, 875–885. [Google Scholar] [CrossRef]
- Nieto, M.M.; Anderson, J.D. Using Early Data to Illuminate the Pioneer Anomaly. Class. Quant. Grav. 2005, 22, 5343–5354. [Google Scholar] [CrossRef]
- Chibueze, J.O.; Sakanoue, H.; Nagayama, T.; Omodaka, T.; Handa, T.; Kamezaki, T.; Burns, R.A.; Kobayashi, H.; Nakanishi, H.; Honma, M.; et al. Trigonometric parallax of IRAS 22,555 + 6213 with VERA: Three-dimensional view of sources along the same line of sight. Astron. Soc. Jpn. 2014, 66, 104. [Google Scholar] [CrossRef]
- Zasov, A.V.; Saburova, A.S.; Khoperskov, A.V.; Khoperskov, S.A. Dark matter in galaxies. Phys. Uspekhi 2017, 60, 3–39. [Google Scholar] [CrossRef] [Green Version]
- Ringermacher, H.I.; Mead, L.R. Observation of Discrete Oscillations in a Model-Independent Plot of Cosmological Scale Factor versus Lookback Time and Scalar Field Model. Astron. J. 2015, 149, 137. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Abraham, R.; Romanowsky, A.J.; Brodie, J.; Conroy, C.; Danieli, S.; Zhang, J. Extensive globular cluster systems associated with ultra diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 2017, 844, L11. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Danieli, S.; Cohen, Y.; Merritt, A.; Romanowsky, A.J.; Abraham, R.; Brodie, J.; Conroy, C.; Lokhorst, D.; Mowla, L.; et al. A galaxy lacking dark matter. Nature 2018, 555, 629–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dokkum, P.; Cohen, Y.; Danieli, S.; Diederik Kruijssen, J.M.; Romanowsky, A.J.; Merritt, A.; Abraham, R.; Conroy, C.; Lokhorst, D.; Mowla, L.; et al. An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter. Astrophys. J. Lett. 2018, 856, L30. [Google Scholar] [CrossRef] [Green Version]
- Van Dokkum, P.; Abraham, R.; Brodie, J.; Conroy, C.; Danieli, S.; Merritt, A.; Mowla, L.; Romanowsky, A.; Zhang, J. A High Stellar Velocity Dispersion and 100 Globular Clusters for the Ultra Diffuse Galaxy Dragonfly 44. Astrophys. J. Lett. 2016, 828, L6. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaripov, F. The Ambiguity in the Definition and Behavior of the Gravitational and Cosmological ‘Coupling Constants’ in the Theory of Induced Gravity. Symmetry 2019, 11, 81. https://doi.org/10.3390/sym11010081
Zaripov F. The Ambiguity in the Definition and Behavior of the Gravitational and Cosmological ‘Coupling Constants’ in the Theory of Induced Gravity. Symmetry. 2019; 11(1):81. https://doi.org/10.3390/sym11010081
Chicago/Turabian StyleZaripov, Farkhat. 2019. "The Ambiguity in the Definition and Behavior of the Gravitational and Cosmological ‘Coupling Constants’ in the Theory of Induced Gravity" Symmetry 11, no. 1: 81. https://doi.org/10.3390/sym11010081