# Statistical Damage Model of Altered Granite under Dry-Wet Cycles

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Research Background

#### 2.2. Sample Tested

_{2}and K

_{2}O·Al

_{2}O

_{3}·6SiO

_{2}.

#### 2.3. Test of Dry-Wet Cycles

#### 2.4. Results of Uniaxial Compression Test

## 3. Damage Variables under Dry-Wet Cycles

#### 3.1. Hydraulic Damage Variable (D_{w})

#### 3.2. Loading Damage Variable (D_{m})

#### 3.3. Comprehensive Damage Variable (D)

## 4. Damage Constitutive Model under Dry-Wet Cycles

#### 4.1. Damage Constitutive Model

#### 4.2. Comparison of Damage Model and Test Results

#### 4.3. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Minardi, A.; Ferrari, A.; Ewy, R. Nonlinear Elastic Response of Partially Saturated Gas Shales in Uniaxial Compression. Rock Mech. Rock Eng.
**2018**, 3, 1–12. [Google Scholar] [CrossRef] - Wang, Z.L.; Shi, H.; Wang, J.G. Mechanical Behavior and Damage Constitutive Model of Granite Under Coupling of Temperature and Dynamic Loading. Rock Mech. Rock Eng.
**2018**, 15, 1–16. [Google Scholar] [CrossRef] - Liu, L.; Xu, W.Y.; Zhao, L.Y. An Experimental and Numerical Investigation of the Mechanical Behavior of Granite Gneiss Under Compression. Rock Mech. Rock Eng.
**2016**, 50, 1–8. [Google Scholar] [CrossRef] - Berto, L.; Saetta, A.; Talledo, D. Constitutive model of concrete damaged by freeze–thaw action for evaluation of structural performance of RC elements. Constr. Build. Mater.
**2015**, 98, 559–569. [Google Scholar] [CrossRef] - Raude, S.; Laigle, F.; Giot, R. A unified thermoplastic/viscoplastic constitutive model for geomaterials. Acta Geotech.
**2016**, 11, 849–869. [Google Scholar] [CrossRef] - Parisio, F.; Vilarrasa, V.; Laloui, L. Hydro-mechanical Modeling of Tunnel Excavation in Anisotropic Shale with Coupled Damage-Plasticity and Micro-dilatant Regularization. Rock Mech. Rock Eng.
**2018**, 51, 3819–3833. [Google Scholar] [CrossRef] - Kikumoto, M.; Nguyen, V.P.Q.; Yasuhara, H. Constitutive model for soft rocks considering structural healing and decay. Comput. Geotech.
**2017**, 91, 93–103. [Google Scholar] [CrossRef] - Mortazavi, A.; Molladavoodi, H. A numerical investigation of brittle rock damage model in deep underground openings. Eng. Fract. Mech.
**2012**, 90, 101–120. [Google Scholar] [CrossRef] - Cerfontaine, B.; Charlier, R.; Collin, F. Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behavior of Brittle Rock Materials. Rock Mech. Rock Eng.
**2017**, 50, 2677–2694. [Google Scholar] [CrossRef] - Li, X.; Cao, W.G.; Su, Y.H. A statistical damage constitutive model for softening behavior of rocks. Eng. Geotech.
**2012**, 113–114, 1–17. [Google Scholar] [CrossRef] - Asadollahi, P.; Tonon, F. Constitutive model for rock fractures: Revisiting Barton’s empirical model. Eng. Geotech.
**2010**, 113, 11–32. [Google Scholar] [CrossRef] - Unteregger, D.; Fuchs, B.; Hofstetter, G. A damage plasticity model for different types of intact rock. Int. J. Rock Mech. Min. Sci.
**2015**, 80, 402–411. [Google Scholar] [CrossRef] - Amorosi, A.; Aversa, S.; Boldini, D. Application of a new constitutive model to the analysis of plate load tests in a pyroclastic rock. Int. J. Rock Mech. Min. Sci.
**2015**, 78, 271–282. [Google Scholar] [CrossRef] - Özbek, A. Investigation of the effects of wetting–drying and freezing–thawing cycles on some physical and mechanical properties of selected ignimbrites. Bull. Eng. Geol. Environ.
**2014**, 73, 595–609. [Google Scholar] [CrossRef] - Khanlari, G.; Abdilor, Y. Influence of dry-wet, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran. Bull. Eng. Geol. Environ.
**2015**, 74, 1287–1300. [Google Scholar] [CrossRef] - Qin, Z.; Chen, X.X.; Fu, H.L. Damage Features of Altered Rock Subjected to Drying-Wetting Cycles. Adv. Civ. Eng.
**2018**, 1, 1–10. [Google Scholar] [CrossRef] - Chen, X.X.; Gong, Y.P. Features of Shear Strength Parameters Reflecting Damage to Rock Caused by Water Invasion-Loss Cycles. Geotech. Geol. Eng.
**2018**. [Google Scholar] [CrossRef] - Krajcinovic, D. Damage mechanics. Mech. Mater
**1989**, 8, 117–197. [Google Scholar] [CrossRef] - Wu, Y.; Wang, W.H.; Yang, W.Q. Probability Theory and Mathematical Statistics; Higher Education Press: Beijing, China, 2016. [Google Scholar]
- Yan, C.F.; Xu, J. Probability Model of Rock Mass Strength Criterion and Its Application; Chongqing University Press: Chongqing, China, 1999. [Google Scholar]
- Cao, W.G.; Li, X.; Zhao, H. Damage constitutive model for strain-softening rock based on normal distribution and its parameter determination. J. Cent. South Univ. Technol.
**2007**, 14, 719–724. [Google Scholar] [CrossRef] - Paisley, J.; Wang, C.; Blei, D.M. The Discrete Infinite Logistic Normal Distribution. Bayesian Anal.
**2012**, 15, 74–82. [Google Scholar] [CrossRef] - Bian, K.; Liu, J.; Zhang, W. Mechanical Behavior and Damage Constitutive Model of Rock Subjected to Water-Weakening Effect and Uniaxial Loading. Rock Mech. Rock Eng.
**2018**. [Google Scholar] [CrossRef] - Grgic, D. Constitutive modelling of the elastic–plastic, viscoplastic and damage behaviour of hard porous rocks within the unified theory of inelastic flow. Acta Geotech.
**2016**, 11, 95–126. [Google Scholar] [CrossRef]

**Figure 3.**(

**a**) Results of electron probe; (

**b**) Element recognition of position 1; (

**c**) Element recognition of position 2; (

**d**) Element recognition of position 3.

**Figure 6.**(

**a**) One-dimensional normal distribution with different $\mu $, (

**b**) One-dimensional normal distribution with different $\zeta $.

**Figure 8.**(

**a**) Comparison of the damage model and test results after 0 dry-wet cycle; (

**b**) Comparison of damage model and test results after 5 dry-wet cycles; (

**c**) Comparison of damage model and test results after 15 dry-wet cycles; (

**d**) Comparison of damage model and test results after 20 dry-wet cycles; (

**e**) Comparison of damage model and test results after 30 dry-wet cycles; (

**f**) Comparison of damage model and test results after 60 dry-wet cycles.

Number of Cycles | μ | $\mathit{\zeta}$ | R^{2} |
---|---|---|---|

0 | 8.653 | 0.394 | 0.9758 |

5 | 8.667 | 0.614 | 0.9787 |

15 | 8.592 | 0.505 | 0.9622 |

20 | 8.637 | 0.618 | 0.9404 |

30 | 8.297 | 0.577 | 0.9132 |

60 | 8.140 | 0.589 | 0.9163 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chen, X.; He, P.; Qin, Z.; Li, J.; Gong, Y.
Statistical Damage Model of Altered Granite under Dry-Wet Cycles. *Symmetry* **2019**, *11*, 41.
https://doi.org/10.3390/sym11010041

**AMA Style**

Chen X, He P, Qin Z, Li J, Gong Y.
Statistical Damage Model of Altered Granite under Dry-Wet Cycles. *Symmetry*. 2019; 11(1):41.
https://doi.org/10.3390/sym11010041

**Chicago/Turabian Style**

Chen, Xuxin, Ping He, Zhe Qin, Jianye Li, and Yanping Gong.
2019. "Statistical Damage Model of Altered Granite under Dry-Wet Cycles" *Symmetry* 11, no. 1: 41.
https://doi.org/10.3390/sym11010041