Next Article in Journal
Statistical Damage Model of Altered Granite under Dry-Wet Cycles
Previous Article in Journal
Probabilistic Linguistic Aggregation Operators Based on Einstein t-Norm and t-Conorm and Their Application in Multi-Criteria Group Decision Making
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multivalued Fixed Point Results in Dislocated b-Metric Spaces with Application to the System of Nonlinear Integral Equations

1
Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad 44000, Pakistan
2
Department of Mathematics and Statistics, Riphah International University, Islamabad 44000, Pakistan
3
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2019, 11(1), 40; https://doi.org/10.3390/sym11010040
Submission received: 5 December 2018 / Revised: 20 December 2018 / Accepted: 23 December 2018 / Published: 2 January 2019

Abstract

:
The purpose of this paper is to find out fixed point results for a pair of semi α * -dominated multivalued mappings fulfilling a generalized locally F-dominated multivalued contractive condition on a closed ball in complete dislocated b-metric space. Some new fixed point results with graphic contractions on closed ball for a pair of multi graph dominated mappings on dislocated b-metric space have been established. An application to the existence of unique common solution of a system of integral equations is presented. 2010 Mathematics Subject Classification: 46Txx, 47H04, 47H10; 54H25.

1. Introduction and Preliminaries

Fixed point theory plays a foundational role in functional analysis. Banach [1] proved significant result for contraction mappings. Due to its significance, a large number of authors have proved many interesting multiplications of his result (see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]). Recently, Kumari et al. [22] discussed some fixed point theorem in b-dislocated metric space and proved efficient soloution for a non-linear integral equations and non-linear fractional differential equations. In this paper, we have obtained common fixed point for a pair of multivalued mappings satisfying generalized rational type F-dominated contractive conditions on a closed ball in complete dislocated b-metric space. We have used weaker class of strictly increasing mappings F rather than class of mappings F used by Wardowski [34]. Moreover, we investigate our results in a better framework of dislocated b-metric space. Additionally, some new fixed point results with graphic contractions on closed ball for multi graph dominated mappings on dislocated b-metric space have been established. New results in ordered spaces, partial b-metric space, dislocated metric space, partial metric space, b-metric space, and metric space can be obtained as corollaries of our results. We give the following concepts which will be helpful to understand the paper.
Definition 1 ([16]).
Let Z be a nonempty set and d l : Z × Z [ 0 , ) be a function, called a dislocated b-metric (or simply d l -metric), if there exists b 1 such that for any g , p , q Z , the following conditions hold:
(i) If d l ( g , p ) = 0 , then g = p ;
(ii) d l ( g , p ) = d l ( p , g ) ;
(iii) d l ( g , p ) b [ d l ( g , q ) + d l ( q , p ) ] .
The pair ( Z , d l ) is called a dislocated b-metric space. It should be noted that every dislocated metric is a dislocated b-metric with b = 1 .
It is clear that if d l ( g , p ) = 0 , then from (i), g = p . But if g = p , d l ( g , p ) may not be 0. For g Z and ε > 0 , B ( g , ε ) ¯ = { p Z : d l ( g , p ) ε } is a closed ball in ( Z , d l ) . We use D . B . M . S instead dislocated b-metric space. Let Z = Q + { 0 } . Define d l ( g , p ) = ( g + p ) 2 for all g , p Z . Then ( Z , d l ) is a D . B . M . S with constant b = 2 .
Definition 2 ([16]).
Let ( Z , d l ) be a D . B . M . S .
(i) A sequence { g n } in ( Z , d l ) is called Cauchy sequence if given ε > 0 , there corresponds n 0 N such that for all n , m n 0 we have d l ( g m , g n ) < ε or lim n , m d l ( g n , g m ) = 0 .
(ii) A sequence { g n } dislocated b-converges (for short d l -converges) to g if lim n d l ( g n , g ) = 0 . In this case g is called a d l -limit of { g n } .
(iii) ( Z , d l ) is called complete if every Cauchy sequence in Z converges to a point g Z such that d l ( g , g ) = 0 .
Definition 3.
Let Q be a nonempty subset of D . B . M . S of Z and let g Z . An element p 0 Q is called a best approximation in Q if
d l ( g , Q ) = d l ( g , p 0 ) ,   where   d l ( g , Q ) = inf p Q d l ( g , p ) .
We denote P ( Z ) be the set of all closed proximinal subsets of Z . Let X = R + { 0 } and d l ( g , p ) = ( g + p ) 2 . Define a set A = [ 3 , 5 ] , then for each x X
d l ( x , A ) = d l ( x , [ 3 , 5 ] ) = inf u [ 3 , 5 ] d l ( x , u ) = d l ( x , 3 ) .
Hence 3 is a best approximation in A for each x X . Also, [ 3 , 5 ] is a proximinal set.
Definition 4 ([32]).
The function H d l : P ( Z ) × P ( Z ) R + , defined by
H d l ( N , M ) = max { sup n N d l ( n , M ) ,   sup m M d l ( N , m ) }
is called dislocated Hausdorff b-metric on P ( Z ) . Let X = R + { 0 } and d l ( x , y ) = ( x + y ) 2 . If N = [ 3 , 5 ] , R = [ 7 , 8 ] , then H d l ( N , R ) = 144 .
Definition 5 ([32]).
Let S : Z P ( Z ) be a multivalued mapping and α : Z × Z [ 0 , + ) . Let K Z , we say that S is semi α * -admissible on K, whenever α ( i , j ) 1 implies that α * ( S i , S j ) 1 , for all i,j K , where α * ( S i , S j ) = i n f { α ( u , v ) : u S i , v S j } . If K = Z , then we say that S is α * -admissible.
Definition 6.
Let ( Z , d l ) be a D . B . M . S . Let S : Z P ( Z ) be multivalued mapping and α : Z × Z [ 0 , + ) . Let A Z , we say that the S is semi α * -dominated on H , whenever α * ( i , S i ) 1 for all i H , where α * ( i , S i ) = inf { α ( i , l ) : l S i } . If H = Z , then we say that the S is α * -dominated. If S : Z Z be a self mapping, then S is semi α-dominated on H , whenever α ( i , S i ) 1 for all i H .
Definition 7 ([34]).
Let ( Z , d ) be a metric space. A mapping H : Z Z is said to be an F-contraction if there exists τ > 0 such that
j , k Z ,   d ( H j , H k ) > 0 τ + F ( d ( H j , H k ) ) F ( d ( j , k ) )
where F : R + R is a mapping satisfying the following conditions:
  • (F1) F is strictly increasing, i.e. for all j , k R + such that j < k , F ( j ) < F ( k ) ;
  • (F2) For each sequence { α n } n = 1 of positive numbers, lim n α n = 0 if and only if lim n F ( α n ) = ;
  • (F3) There exists k ( 0 , 1 ) such that lim α 0 + α k F ( α ) = 0 .
Lemma 1.
Let ( Z , d l ) be a D . B . M . S . Let ( P ( Z ) , H d l ) be a dislocated Hausdorff b-metric space on P ( Z ) . Then, for all G , H P ( Z ) and for each g G there exist h g H satisfies d l ( g , H ) = d l ( g , h g ) , then H d l ( G , H ) d l ( g , h g ) .
Proof. 
If H d l ( G , H ) = sup g G d l ( g , H ) , then H d l ( G , H ) d l ( g , H ) for each g G . As H is a proximinal set, so for each g Z , there exists at least one best approximination h g H satisfies d l ( g , H ) = d l ( g , h g ) . Now we have, H d l ( G , H ) d l ( g , h g ) . Now, if
H d l ( G , H ) = sup h H d l ( G , h ) sup g G d l ( g , H ) d l ( g , h g ) .
Hence proved. □
Example 1.
Let Z = R . Define the mapping α : Z × Z [ 0 , ) by
α ( j , k ) = { 1   if   j > k 1 2   otherwise } .
Define S , T : Z P ( Z ) by
S j = [ j 4 , j 3 ]   and   T k = [ k 2 , k 1 ] .
Suppose j = 3 and k = 2.5 . As 3 > 2.5 , then α ( 3 , 2.5 ) 1 . Now, α * ( S 3 , T 2.5 ) = inf { α ( a , b ) : a S 3 , b T 2.5 } = 1 2 1 , this means the pair ( S , T ) is not α * -admissible. Also, α * ( S 3 , S 2 ) 1 and α * ( T 3 , T 2 ) 1 . This implies S and T are not α * -admissible individually. Now, α * ( j , S j ) = inf { α ( j , b ) : b S j } 1 , for all j Z . Hence S is α * -dominated mapping. Similarly α * ( k , T k ) = inf { α ( k , b ) : b T k } 1 . Hence it is clear that S and Tare α * -dominated but not α * -admissible.

2. Main Result

Let ( Z , d l ) be a D . B . M . S , g 0 Z and S , T : Z P ( Z ) be the multifunctions on Z. Let g 1 S g 0 be an element such that d l ( g 0 , S g 0 ) = d l ( g 0 , g 1 ) . Let g 2 T g 1 be such that d l ( g 1 , T g 1 ) = d l ( g 1 , g 2 ) . Let g 3 S g 2 be such that d l ( g 2 , S g 2 ) = d l ( g 2 , g 3 ) . Continuing this method, we get a sequence g n of points in Z such that g 2 n + 1 S g 2 n and g 2 n + 2 T g 2 n + 1 , where n = 0 , 1 , 2 , . Also, d l ( g 2 n , S g 2 n ) = d l ( g 2 n , g 2 n + 1 ) , d l ( g 2 n + 1 , T g 2 n + 1 ) = d l ( g 2 n + 1 , g 2 n + 2 ) . We denote this iterative sequence by { T S ( g n ) } . We say that { T S ( g n ) } is a sequence in Z generated by g 0 .
Theorem 1.
Let ( Z , d l ) be a complete D . B . M . S with constant b 1 . Let r > 0 , g 0 B d l ( g 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S , T : Z P ( Z ) be the semi α * -dominated mappings on B d l ( g 0 , r ) ¯ . Suppose that the following satisfy:
(i) There exist τ , η 1 , η 2 , η 3 , η 4 > 0 satisfying b η 1 + b η 2 + ( 1 + b ) b η 3 + η 4 < 1 and a strictly increasing mapping F such that
τ + F ( H d l ( S e , T y ) ) F ( η 1 d l ( e , y ) + η 2 d l ( e , S e ) + η 3 d l ( e , T y ) + η 4 d l 2 ( e , S e ) · d l ( y , T y ) 1 + d l 2 ( e , y ) ) ,
whenever e , y B d l ( g 0 , r ) ¯ { T S ( g n ) } , α ( e , y ) 1 and H d l ( S e , T y ) > 0 .
(ii) If λ = η 1 + η 2 + b η 3 1 b η 3 η 4 , then
d l ( g 0 , S g 0 ) λ ( 1 b λ ) r .
Then { T S ( g n ) } is a sequence in B d l ( g 0 , r ) ¯ , α ( g n , g n + 1 ) 1 for all n N { 0 } and { T S ( g n ) } u B d l ( g 0 , r ) ¯ . Also, if the inequality (1) holds for e , y { u } and either α ( g n , u ) 1 or α ( u , g n ) 1 for all n N { 0 } , then S and T have common fixed point u in B d l ( g 0 , r ) ¯ .
Proof. 
Consider a sequence { T S ( g n ) } . From (2), we get
d l ( g 0 , g 1 ) = d l ( g 0 , S g 0 ) λ ( 1 b λ ) r < r .
It follows that,
g 1 B d l ( g 0 , r ) ¯ .
Let g 2 , , g j B d l ( g 0 , r ) ¯ for some j N . If j is odd, then j = 2 ı ` + 1 for some ı ` N . Since S , T : Z P ( Z ) be a semi α * -dominated mappings on B d l ( g 0 , r ) ¯ , so α * ( g 2 ı ` , S g 2 ı ` ) 1 and α * ( g 2 ı ` + 1 , T g 2 ı ` + 1 ) 1 . As α * ( g 2 ı ` , S g 2 ı ` ) 1 , this implies inf { α ( g 2 ı ` , b ) : b S g 2 ı ` } 1 . Also, g 2 ı ` + 1 S g 2 ı ` , so α ( g 2 ı ` , g 2 ı ` + 1 ) 1 . Now, by using Lemma 1, we have
τ + F ( d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) ) τ + F ( H d l ( S g 2 ı ` , T g 2 ı ` + 1 ) )
Now, by using inequality (2.1), we have
τ + F ( d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) ) F [ η 1 d l ( g 2 ı ` , g 2 ı ` + 1 ) + η 2 d l ( g 2 ı ` , S g 2 ı ` ) + η 3 d l ( g 2 ı ` , T g 2 ı ` + 1 ) + η 4 d l 2 ( g 2 ı ` , S g 2 ı ` ) · d l ( g 2 ı ` + 1 , T g 2 ı ` + 1 ) 1 + d l 2 ( g 2 ı ` , g 2 ı ` + 1 ) ] = F [ η 1 d l ( g 2 ı ` , g 2 ı ` + 1 ) + η 2 d l ( g 2 ı ` , g 2 ı ` + 1 ) + η 3 d l ( g 2 ı ` , g 2 ı ` + 2 ) + η 4 d l 2 ( g 2 ı ` , g 2 ı ` + 1 ) · d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) 1 + d l 2 ( g 2 ı ` , g 2 ı ` + 1 ) ]
F [ η 1 d l ( g 2 ı ` , g 2 ı ` + 1 ) + η 2 d l ( g 2 ı ` , g 2 ı ` + 1 ) + b η 3 d l ( g 2 ı ` , g 2 ı ` + 1 ) + b η 3 d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) + η 4 d l 2 ( g 2 ı ` , g 2 ı ` + 1 ) · d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) 1 + d l 2 ( g 2 ı ` , g 2 ı ` + 1 ) ] F ( ( η 1 + η 2 + b η 3 ) d l ( g 2 ı ` , g 2 ı ` + 1 ) + ( b η 3 + η 4 ) d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) ) .
This implies
F ( d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) ) < F ( ( η 1 + η 2 + b η 3 ) d l ( g 2 ı ` , g 2 ı ` + 1 ) + ( b η 3 + η 4 ) d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) ) .
As F is strictly increasing. So, we have
d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) < ( η 1 + η 2 + b η 3 ) d l ( g 2 ı ` , g 2 ı ` + 1 ) + ( b η 3 + η 4 ) d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) .
Which implies
( 1 b η 3 η 4 ) d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) < ( η 1 + η 2 + b η 3 ) d l ( g 2 ı ` , g 2 ı ` + 1 ) d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) < ( η 1 + η 2 + b η 3 1 b η 3 η 4 ) d l ( g 2 ı ` , g 2 ı ` + 1 ) .
As λ = η 1 + η 2 + b η 3 1 b η 3 η 4 < 1 . Hence
d l ( g 2 ı ` + 1 , g 2 ı ` + 2 ) < λ d l ( g 2 ı ` , g 2 ı ` + 1 ) < λ 2 d l ( g 2 ı ` 1 , g 2 ı ` ) < < λ 2 i + 1 d l ( g 0 , g 1 ) .
Similarly, if j is even, we have
d l ( g 2 ı ` + 2 , g 2 ı ` + 3 ) < λ 2 i + 2 d l ( g 0 , g 1 ) .
Now, we have
d l ( g j , g j + 1 ) < λ j d l ( g 0 , g 1 )   for   some   j N .
Now,
d l ( x 0 , g j + 1 ) b d l ( g 0 , g 1 ) + b 2 d l ( g 1 , g 2 ) + + b j + 1 d l ( g j , g j + 1 ) b d l ( g 0 , g 1 ) + b 2 λ ( d l ( g 0 , g 1 ) ) + + b j + 1 λ j + 1 ( d l ( g 0 , g 1 ) ) ,   ( by   ( 3 ) ) d l ( g 0 , g j + 1 ) b ( 1 ( b λ ) j + 1 ) 1 b λ λ ( 1 b λ ) r < r ,
which implies g j + 1 B d l ( g 0 , r ) ¯ . Hence, by induction g n B d l ( g 0 , r ) ¯ for all n N . Also, α ( g n , g n + 1 ) 1 for all n N { 0 } . Now,
d l ( g n , g n + 1 ) < λ n d l ( g 0 , g 1 )   for   all   n N .
Now, for any positive integers m , n ( n > m ) , we have
d l ( g m , g n ) b ( d l ( g m , g m + 1 ) ) + b 2 ( d l ( g m + 1 , g m + 2 ) ) + + b n m ( d l ( g n 1 , g n ) ) , < b λ m d l ( g 0 , g 1 ) + b 2 λ m + 1 d l ( g 0 , g 1 ) + + b n m λ n 1 d l ( g 0 , g 1 ) ,   ( by   ( 4 ) ) < b λ m ( 1 + b λ + ) d l ( g 0 , g 1 )
As η 1 , η 2 , η 3 , η 4 > 0 , b 1 and b η 1 + b η 2 + ( 1 + b ) b η 3 + η 4 < 1 , so | b λ | < 1 . Then, we have
d l ( g m , g n ) < b λ m 1 b λ d l ( g 0 , g 1 ) 0   as   m .
Hence { T S ( g n ) } is a Cauchy sequence in B d l ( g 0 , r ) ¯ . Since ( B d l ( g 0 , r ) ¯ , d l ) is a complete metric space, so there exist u B d l ( g 0 , r ) ¯ such that { T S ( g n ) } u as n , then
lim n d l ( g n , u ) = 0 .
By assumption, α ( g n , u ) 1 . Suppose that d l ( u , T g ) > 0 , then there exist positive integer k such that d l ( g n , T u ) > 0 for all n k . For n k , we have
d l ( u , T u ) d l ( u , g 2 n + 1 ) + d l ( g 2 n + 1 , T u ) d l ( u , g 2 n + 1 ) + H d l ( S g 2 n , T u ) < d l ( u , g 2 n + 1 ) + η 1 d l ( g 2 n , u ) + η 2 d l ( g 2 n , S g 2 n ) + η 3 d l ( g 2 n , T u ) + η 4 d l 2 ( g 2 n , S g 2 n ) · d l ( u , T u ) 1 + d l 2 ( g 2 n , u ) .
Letting n , and by using (5) we get
d l ( u , T u ) < η 3 d l ( u , T u ) < d l ( u , T u ) ,
which is a contradiction. So our supposition is wrong. Hence d l ( u , T u ) = 0 or u T u . Similarly, by using Lemma 1, inequality (1), we can show that d l ( u , S u ) = 0 or u S u . Hence the S and T have a common fixed point u in B d l ( g 0 , r ) ¯ . Now,
d l ( u , u ) b d l ( u , T u ) + b d l ( T u , u ) 0 .
This implies that d l ( u , u ) = 0 .
Example 2.
Let Z = Q + { 0 } and let d l : Z × Z Z be the complete D . B . M . S defined by
d l ( s , o ) = ( s + o ) 2   for   all   s , o Z .
with b = 2 . Define the multivalued mapping, S , T : Z × Z P ( Z ) by,
S g = { [ g 3 , 2 3 g ]   if   g [ 0 , 14 ] Z [ g , g + 1 ]   if   g ( 14 , ) Z
and,
T p = { [ z 4 , 3 4 z ]   if   p [ 0 , 14 ] Z [ p + 1 , p + 3 ]   if   p ( 14 , ) Z .
Suppose that, g 0 = 1 , r = 225 , then B d l ( g 0 , r ) ¯ = [ 0 , 14 ] Z and { T S ( g n ) } = { 1 , 1 3 , 1 12 , } . Take η 1 = 1 10 , η 2 = 1 20 , η 3 = 1 60 , η 4 = 1 30 , then b η 1 + b η 2 + ( 1 + b ) b η 3 + η 4 < 1 and λ = 11 56 . Now
d l ( g 0 , S g 0 ) = 16 9 < 11 56 ( 1 22 56 ) 225 = λ ( 1 b λ ) r
Consider the mapping α : Z × Z [ 0 , ) by
α ( g , p ) = { 1   if   g > p 1 2   otherwise } .
Now, if g , p B d l ( g 0 , r ) ¯ { T S ( g n ) } with α ( g , p ) 1 , we have
H d l ( S g , T p ) = max { sup a S g d l ( a , T p ) , sup b T p d l ( S g , b ) } = max { sup a S g d l ( a , [ p 4 , 3 p 4 ] ) , sup b T p d l ( [ g 3 , 2 g 3 ] , b ) } = max { d l ( 2 g 3 , [ p 4 , 3 p 4 ] ) , d l ( [ g 3 , 2 g 3 ] , 3 p 4 ) }
= max { d l ( 2 g 3 , p 4 ) , d l ( g 3 , 3 p 4 ) } = max { ( 2 g 3 + p 4 ) 2 , ( g 3 + 3 p 4 ) 2 } < 1 10 ( g + p ) 2 + 4 g 2 45 + ( 4 g + p ) 2 960 + 40 g 4 p 2 243 { 1 + ( g + p ) 4 } = 1 10 d l ( g , p ) + 1 20 d l ( g , [ g 3 , 2 3 g ] ) + 1 60 d l ( g , [ p 4 , 3 4 p ] ) + 1 30 d l 2 ( g , [ g 3 , 2 3 g ] ) · d l ( p , [ p 4 , 3 4 p ] ) 1 + d l 2 ( g , p ) .
Thus,
H d l ( S g , T p ) < η 1 d l ( g , p ) + η 2 d l ( g , S g ) + η 3 d l ( g , T p ) + η 4 d l 2 ( g , S g ) · d l ( p , T p ) 1 + d l 2 ( g , p ) ,
which implies that, for any τ ( 0 , 12 95 ] and for a strictly increasing mapping F ( s ) = ln s , we have
τ + F ( H d l ( S g , T p ) ) F ( η 1 d l ( g , p ) + η 2 d l ( g , S g ) + η 3 d l ( g , T p ) + η 4 d l 2 ( g , S g ) · d l ( p , T p ) 1 + d l 2 ( g , p ) ) .
Note that, for 16 , 15 X , then α ( 16 , 15 ) 1 . But, we have
τ + F ( H d l ( S 16 , T 15 ) ) > F ( η 1 d l ( 16 , 15 ) + η 2 d l ( 16 , S 16 ) + η 3 d l ( 16 , T 15 ) + η 4 d l 2 ( 16 , S 16 ) · ( 15 , T 15 ) 1 + d l 2 ( 16 , 15 ) ) .
So condition (1) does not hold on Z . Thus the mappings S and T are satisfying all the conditions of Theorem 1 only for g , p B d l ( g 0 , r ) ¯ { T S ( g n ) } with α ( g , p ) 1 . Hence S and T have a common fixed point.
If, we take S = T in Theorem 1, then we are left with the result.
Corollary 1.
Let ( Z , d l ) be a complete D . B . M . S with constant b 1 . Let r > 0 , g 0 B d l ( g 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S : Z P ( Z ) be the semi α * -dominated mappings on B d l ( g 0 , r ) ¯ . Suppose that the following satisfy:
(i) There exist τ , η 1 , η 2 , η 3 , η 4 > 0 satisfying b η 1 + b η 2 + ( 1 + b ) b η 3 + η 4 < 1 and a strictly increasing mapping F such that
τ + F ( H d l ( S e , S y ) ) F ( η 1 d l ( e , y ) + η 2 d l ( e , S e ) + η 3 d l ( e , S y ) + η 4 d l 2 ( e , S e ) · d l ( y , S y ) 1 + d l 2 ( x , y ) ) ,
whenever e , y B d l ( g 0 , r ) ¯ { S S ( g n ) } , α ( e , y ) 1 and H d l ( S e , S y ) > 0 .
(ii) If λ = η 1 + η 2 + b η 3 1 b η 3 η 4 , then
d l ( g 0 , S g 0 ) λ ( 1 b λ ) r .
Then { S S ( g n ) } is a sequence in B d l ( g 0 , r ) ¯ , α ( g n , g n + 1 ) 1 for all n N { 0 } and { S S ( g n ) } u B d l ( g 0 , r ) ¯ . Also, if the inequality (6) holds for e , y { u } and either α ( g n , u ) 1 or α ( u , g n ) 1 for all n N { 0 } , then S has a fixed point u in B d l ( g 0 , r ) ¯ .
If, we take η 2 = 0 in Theorem 1, then we are left with the result.
Corollary 2.
Let ( Z , d l ) be a complete D . B . M . S with constant b 1 . Let r > 0 , g 0 B d l ( g 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S , T : Z P ( Z ) be the semi α * -dominated mappings on B d l ( g 0 , r ) ¯ . Suppose that the following satisfy:
(i) There exist τ , η 1 , η 3 , η 4 > 0 satisfying b η 1 + ( 1 + b ) b η 3 + η 4 < 1 and a strictly increasing mapping F such that
τ + F ( H d l ( S e , T y ) ) F ( η 1 d l ( e , y ) + η 3 d l ( e , T y ) + η 4 d l 2 ( e , S e ) · d l ( y , T y ) 1 + d l 2 ( e , y ) ) ,
whenever e , y B d l ( g 0 , r ) ¯ { T S ( g n ) } , α ( e , y ) 1 and H d l ( S e , T y ) > 0 .
(ii) If λ = η 1 + b η 3 1 b η 3 η 4 , then
d l ( g 0 , S g 0 ) λ ( 1 b λ ) r .
Then { T S ( g n ) } is a sequence in B d l ( g 0 , r ) ¯ , α ( g n , g n + 1 ) 1 for all n N { 0 } and { T S ( g n ) } u B d l ( g 0 , r ) ¯ . Also, if the inequality (7) holds for e , y { u } and either α ( g n , u ) 1 or α ( u , g n ) 1 for all n N { 0 } , then S and T have common fixed point u in B d l ( g 0 , r ) ¯ .
If, we take η 3 = 0 in Theorem 1, then we are left with the result.
Corollary 3.
Let ( Z , d l ) be a complete D . B . M . S with constant b 1 . Let r > 0 , g 0 B d l ( g 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S , T : Z P ( Z ) be the semi α * -dominated mappings on B d l ( g 0 , r ) ¯ . Suppose that the following satisfy:
(i) There exist τ , η 1 , η 2 , η 4 > 0 satisfying b η 1 + b η 2 + η 4 < 1 and a strictly increasing mapping F such that
τ + F ( H d l ( S e , T y ) ) F ( η 1 d l ( e , y ) + η 2 d l ( e , S e ) + η 4 d l 2 ( e , S e ) · d l ( y , T y ) 1 + d l 2 ( e , y ) ) ,
whenever e , y B d l ( g 0 , r ) ¯ { T S ( g n ) } , α ( e , y ) 1 and H d l ( S e , T y ) > 0 .
(ii) If λ = η 1 + η 2 1 η 4 , then
d l ( g 0 , S g 0 ) λ ( 1 b λ ) r .
Then { T S ( g n ) } is a sequence in B d l ( g 0 , r ) ¯ , α ( g n , g n + 1 ) 1 for all n N { 0 } and { T S ( g n ) } u B d l ( g 0 , r ) ¯ . Also, if the inequality (8) holds for e , y { u } and either α ( g n , u ) 1 or α ( u , g n ) 1 for all n N { 0 } , then S and T have common fixed point u in B d l ( g 0 , r ) ¯ .
If, we take η 4 = 0 in Theorem 1, then we are left only with the result.
Corollary 4.
Let ( Z , d l ) be a complete D . B . M . S with constant b 1 . Let r > 0 , g 0 B d l ( g 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S , T : Z P ( Z ) be the semi α * -dominated mappings on B d l ( g 0 , r ) ¯ . Suppose that the following satisfy:
(i) There exist τ , η 1 , η 2 , η 3 > 0 satisfying b η 1 + b η 2 + ( 1 + b ) b η 3 < 1 and a strictly increasing mapping F such that
τ + F ( H d l ( S e , T y ) ) F ( η 1 d l ( e , y ) + η 2 d l ( e , S e ) + η 3 d l ( e , T y ) ) ,
whenever e , y B d l ( g 0 , r ) ¯ { T S ( g n ) } , α ( e , y ) 1 and H d l ( S e , T y ) > 0 .
(ii) If λ = η 1 + η 2 + b η 3 1 b η 3 , then
d l ( g 0 , S g 0 ) λ ( 1 b λ ) r .
Then { T S ( g n ) } is a sequence in B d l ( g 0 , r ) ¯ , α ( g n , g n + 1 ) 1 for all n N { 0 } and { T S ( g n ) } u B d l ( g 0 , r ) ¯ . Also, if the inequality (9) holds for e , y { u } and either α ( g n , u ) 1 or α ( u , g n ) 1 for all n N { 0 } , then S and T have common fixed point u in B d l ( g 0 , r ) ¯ .

3. Fixed Point Results For Graphic Contractions

In this section we presents an application of Theorem 1 in graph theory. Jachymski [20] proved the result concerning for contraction mappings on metric space with a graph. Hussain et al. [14] introduced the fixed points theorem for graphic contraction and gave an application. Furtheremore, avoiding sets condition is closed related to fixed point and is applied to the study of multi-agent systems (see [30]).
Definition 8.
Let Z be a nonempty set and Q = ( V ( Q ) , W ( Q ) ) be a graph such that V ( Q ) = Z , A Z . A mapping S : Z P ( Z ) is said to be multi graph dominated on A if ( p , q ) W ( Q ) , for all q S p and q A .
Theorem 2.
Let ( Z , d l ) be a complete D . B . M . S endowed with a graph Q with constant b 1 . Let r > 0 , g 0 B d l ( g 0 , r ) ¯ and S , T : Z P ( Z ) . Suppose that the following satisfy:
(i) S and T are multi graph dominated on B d l ( g 0 , r ) ¯ { T S ( g n ) } .
(ii) There exist τ , η 1 , η 2 , η 3 , η 4 > 0 satisfying b η 1 + b η 2 + ( 1 + b ) b η 3 + η 4 < 1 and a strictly increasing mapping F such that
τ + F ( H d l ( S p , T q ) ) F ( η 1 d l ( p , q ) + η 2 d l ( p , S p ) + η 3 d l ( p , T q ) + η 4 d l 2 ( p , S p ) · d l ( q , T q ) 1 + d l 2 ( p , q ) ) ,
whenever p , q B d l ( g 0 , r ) ¯ { T S ( g n ) } , ( p , q ) W ( Q ) and H d l ( S p , T q ) > 0 .
(iii) d l ( g 0 , S g 0 ) λ ( 1 b λ ) r , where λ = η 1 + η 2 + b η 3 1 b η 3 η 4 .
Then, { T S ( g n ) } is a sequence in B d l ( g 0 , r ) ¯ , { T S ( g n ) } m * and ( g n , g n + 1 ) W ( Q ) , where g n , g n + 1 { T S ( g n ) } . Also, if the inequality (10) holds for p , q { m * } and ( g n , m * ) W ( Q ) or ( m * , g n ) W ( Q ) for all n N { 0 } , then S and T have common fixed point m * in B d l ( g 0 , r ) ¯ .
Proof. 
Define, α : Z × Z [ 0 , ) by
α ( p , q ) = { 1 , if   p B d l ( g 0 , r ) ¯ ,   ( p , q ) W ( Q )   0 ,       otherwise .
As S and T are semi graph dominated on B d l ( g 0 , r ) ¯ , then for p B d l ( g 0 , r ) ¯ , ( p , q ) W ( Q ) for all q S p and ( p , q ) W ( Q ) for all q T p . So, α ( p , q ) = 1 for all q S p and α ( p , q ) = 1 for all q T p . This implies that inf { α ( p , q ) : q S p } = 1 and inf { α ( p , q ) : q T p } = 1 . Hence α * ( p , S p ) = 1 , α * ( p , T p ) = 1 for all p B d l ( g 0 , r ) ¯ . So, S , T : Z P ( Z ) are the semi α * -dominated mapping on B d l ( g 0 , r ) ¯ . Moreover, inequality (10) can be written as
τ + F ( H d l ( S p , T q ) ) F ( η 1 d l ( p , q ) + η 2 d l ( p , S p ) + η 3 d l ( p , T q ) + η 4 d l 2 ( p , S p ) · d l ( q , T q ) 1 + d l 2 ( p , q ) )
whenever p , q B d l ( g 0 , r ) ¯ { T S ( g n ) } , α ( p , q ) 1 and H d l ( S p , T q ) > 0 . Also, (iii) holds. Then, by Theorem 1, we have { T S ( g n ) } is a sequence in B d l ( g 0 , r ) ¯ and { T S ( g n ) } m * B d l ( g 0 , r ) ¯ . Now, g n , m * B d l ( g 0 , r ) ¯ and either ( g n , m * ) W ( Q ) or ( m * , g n ) W ( Q ) implies that either α ( g n , m * ) 1 or α ( m * , g n ) 1 . So, all the conditions of Theorem 1 are satisfied. Hence, by Theorem 1, S and T have a common fixed point m * in B d l ( g 0 , r ) ¯ and d l ( m * , m * ) = 0 .

4. Fixed Point Results for Single Valued Mapping

In this section, we discussed some new fixed point results for single valued mapping in complete D . B . M . S . Let ( Z , d l ) be a D . B . M . S , c 0 Z and S , T : Z Z be the mappings. Let c 1 = S c 0 , c 2 = T c 1 , c 3 = S c 2 . Continuing in this way, we get a sequence c n of points in Z such that c 2 n + 1 = S c 2 n and c 2 n + 2 = T c 2 n + 1 , where n = 0 , 1 , 2 , . We denote this iterative sequence by { T S ( c n ) } . We say that { T S ( c n ) } is a sequence in Z generated by c 0 .
Theorem 3.
Let ( Z , d l ) be a complete D . B . M . S with constant t 1 . Let r > 0 , c 0 B d l ( c 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S , T : Z Z be the semi α-dominated mappings on B d l ( c 0 , r ) ¯ . Suppose that the following satisfy:
(i) There exist τ , η 1 , η 2 , η 3 , η 4 > 0 satisfying t η 1 + t η 2 + ( 1 + t ) t η 3 + η 4 < 1 and a strictly increasing mapping F such that
τ + F ( d l ( S e , T y ) ) F ( η 1 d l ( e , y ) + η 2 d l ( e , S e ) + η 3 d l ( e , T y ) + η 4 d l 2 ( e , S e ) · d l ( y , T y ) 1 + d l 2 ( e , y ) ) ,
whenever e , y B d l ( c 0 , r ) ¯ { T S ( c n ) } , α ( e , y ) 1 and H d l ( S e , T y ) > 0 .
(ii) If λ = η 1 + η 2 + t η 3 1 t η 3 η 4 , then
d l ( c 0 , S c 0 ) λ ( 1 t λ ) r .
Then { T S ( c n ) } is a sequence in B d l ( c 0 , r ) ¯ , α ( c n , c n + 1 ) 1 for all n N { 0 } and { T S ( c n ) } u B d l ( c 0 , r ) ¯ . Also, if the inequality (4.1) holds for e , y { u } and either α ( c n , u ) 1 or α ( u , c n ) 1 for all n N { 0 } , then S and T have common fixed point u in B d l ( c 0 , r ) ¯ .
Proof. 
The proof of the above Theorem is similar as Theorem 1.
If, we take S = T in Theorem 3, then we are left with the result. □
Corollary 5.
Let ( Z , d l ) be a complete D . B . M . S with constant t 1 . Let r > 0 , c 0 B d l ( c 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S : Z Z be the semi α-dominated mappings on B d l ( c 0 , r ) ¯ . Suppose that the following satisfy:
(i) There exist τ , η 1 , η 2 , η 3 , η 4 > 0 satisfying t η 1 + t η 2 + ( 1 + t ) t η 3 + η 4 < 1 and a strictly increasing mapping F such that
τ + F ( d l ( S e , S y ) ) F ( η 1 d l ( e , y ) + η 2 d l ( e , S e ) + η 3 d l ( e , S y ) + η 4 d l 2 ( e , S e ) · d l ( y , S y ) 1 + d l 2 ( e , y ) ) ,
whenever e , y B d l ( c 0 , r ) ¯ { S S ( c n ) } , α ( e , y ) 1 and H d l ( S e , S y ) > 0 .
(ii) If λ = η 1 + η 2 + t η 3 1 t η 3 η 4 , then
d l ( c 0 , S c 0 ) λ ( 1 t λ ) r .
Then { S S ( c n ) } is a sequence in B d l ( c 0 , r ) ¯ , α ( c n , c n + 1 ) 1 for all n N { 0 } and { S S ( c n ) } u B d l ( c 0 , r ) ¯ . Also, if the inequality (12) holds for e , y { u } and either α ( c n , u ) 1 or α ( u , c n ) 1 for all n N { 0 } , then S has a fixed point u in B d l ( c 0 , r ) ¯ .
If, we take η 2 = 0 in Theorem 3, then we are left with the result.
Corollary 6.
Let ( Z , d l ) be a complete D . B . M . S with constant b 1 . Let r > 0 , c 0 B d l ( c 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S , T : Z Z be the semi α-dominated mappings on B d l ( c 0 , r ) ¯ . Suppose that the following satisfy:
(i) There exist τ , η 1 , η 3 , η 4 > 0 satisfying t η 1 + ( 1 + t ) t η 3 + η 4 < 1 and a strictly increasing mapping F such that
τ + F ( d l ( S e , T y ) ) F ( η 1 d l ( e , y ) + η 3 d l ( e , T y ) + η 4 d l 2 ( e , S e ) · d l ( y , T y ) 1 + d l 2 ( e , y ) ) ,
whenever e , y B d l ( c 0 , r ) ¯ { T S ( c n ) } , α ( e , y ) 1 and H d l ( S e , T y ) > 0 .
(ii) If λ = η 1 + t η 3 1 t η 3 η 4 , then
d l ( c 0 , S c 0 ) λ ( 1 t λ ) r .
Then { T S ( c n ) } is a sequence in B d l ( c 0 , r ) ¯ , α ( c n , c n + 1 ) 1 for all n N { 0 } and { T S ( c n ) } u B d l ( c 0 , r ) ¯ . Also, if the inequality (13) holds for e , y { u } and either α ( c n , u ) 1 or α ( u , c n ) 1 for all n N { 0 } , then S and T have common fixed point u in B d l ( c 0 , r ) ¯ .
If, we take η 3 = 0 in Theorem 3, then we are left with the result.
Corollary 7.
Let ( Z , d l ) be a complete D . B . M . S with constant t 1 . Let r > 0 , c 0 B d l ( c 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S , T : Z Z be the semi α-dominated mappings on B d l ( c 0 , r ) ¯ . Suppose that the following satisfy:
(i) There exist τ , η 1 , η 2 , η 4 > 0 satisfying t η 1 + t η 2 + η 4 < 1 and a strictly increasing mapping F such that
τ + F ( d l ( S e , T y ) ) F ( η 1 d l ( e , y ) + η 2 d l ( e , S e ) + η 4 d l 2 ( e , S e ) · d l ( y , T y ) 1 + d l 2 ( e , y ) ) ,
whenever e , y B d l ( c 0 , r ) ¯ { T S ( c n ) } , α ( e , y ) 1 and H d l ( S e , T y ) > 0 .
(ii) If λ = η 1 + η 2 1 η 4 , then
d l ( c 0 , S c 0 ) λ ( 1 b λ ) r .
Then { T S ( c n ) } is a sequence in B d l ( c 0 , r ) ¯ , α ( c n , c n + 1 ) 1 for all n N { 0 } and { T S ( c n ) } u B d l ( c 0 , r ) ¯ . Also, if the inequality (14) holds for e , y { u } and either α ( c n , u ) 1 or α ( u , c n ) 1 for all n N { 0 } , then S and T have common fixed point u in B d l ( c 0 , r ) ¯ .
If, we take η 4 = 0 in Theorem 3, then we are left with the result.
Corollary 8.
Let ( Z , d l ) be a complete D . B . M . S with constant b 1 . Let r > 0 , c 0 B d l ( c 0 , r ) ¯ Z , α : Z × Z [ 0 , ) and S , T : Z Z be the semi α-dominated mappings on B d l ( c 0 , r ) ¯ . Assume that the following hold:
(i) There exist τ , η 1 , η 2 , η 3 > 0 satisfying t η 1 + t η 2 + ( 1 + t ) t η 3 < 1 and a strictly increasing mapping F such that
τ + F ( d l ( S e , T y ) ) F ( η 1 d l ( e , y ) + η 2 d l ( e , S e ) + η 3 d l ( e , T y ) ) ,
whenever e , y B d l ( c 0 , r ) ¯ { T S ( c n ) } , α ( e , y ) 1 and H d l ( S e , T y ) > 0 .
(ii) If λ = η 1 + η 2 + t η 3 1 t η 3 , then
d l ( c 0 , S c 0 ) λ ( 1 t λ ) r .
Then { T S ( c n ) } is a sequence in B d l ( c 0 , r ) ¯ , α ( c n , c n + 1 ) 1 for all n N { 0 } and { T S ( c n ) } u B d l ( c 0 , r ) ¯ . Also, if the inequality (15) holds for e , y { u } and either α ( c n , u ) 1 or α ( u , c n ) 1 for all n N { 0 } , then S and T have common fixed point u in B d l ( c 0 , r ) ¯ .

5. Application to the Systems of Integral Equations

Theorem 4.
Let ( Z , d l ) be a complete D . B . M . S with constant b 1 . Let c 0 Z and S , T : Z Z . Assume that, There exist τ , η 1 , η 2 , η 3 , η 4 > 0 satisfying b η 1 + b η 2 + ( 1 + b ) b η 3 + η 4 < 1 and a strictly increasing mapping F such that the following satisfy:
τ + F ( d l ( S e , T y ) ) F ( η 1 d l ( e , y ) + η 2 d l ( e , S e ) + η 3 d l ( e , T y ) + η 4 d l 2 ( e , S e ) · d l ( y , T y ) 1 + d l 2 ( e , y ) ) ,
whenever e , y { T S ( c n ) } and d ( S e , T y ) > 0 . Then { T S ( c n ) } g Z . Also, if the inequality (16) holds for g, then S and T have unique common fixed point g in Z.
Proof. 
The proof of this Theorem is similar as Theorem 1. We have to prove the uniqueness only. Let p be another common fixed point of S and T . Suppose d l ( S g , T p ) > 0 . Then, we have
τ + F ( d l ( S g , T p ) ) F ( η 1 d l ( g , p ) + η 2 d l ( g , S g ) + η 3 d l ( g , T p ) + η 4 d l 2 ( g , S g ) · d l ( p , T p ) 1 + d l 2 ( g , p ) )
This implies that
d l ( g , p ) < η 1 d l ( g , p ) + η 3 d l ( g , p ) < d l ( g , p ) ,
which is a contradiction. So d l ( S g , T p ) = 0 . Hence g = p .
In this section, we discuss the application of fixed point Theorem 4 in form of Volterra type integral equations.
g ( k ) = 0 k H 1 ( k , h , g ( h ) ) d h ,
p ( k ) = 0 k H 2 ( k , h , p ( h ) ) d h
for all k [ 0 , 1 ] . We find the solution of ( 17 ) and ( 18 ) . Let Z = C ( [ 0 , 1 ] , R + ) be the set of all continuous functions on [ 0 , 1 ] , endowed with the complete dislocated b-metric. For g C ( [ 0 , 1 ] , R + ) , define supremum norm as: g τ = sup k [ 0 , 1 ] { | g ( k ) | e τ k } , where τ > 0 is taken arbitrary. Then define
d τ ( g , p ) = [ sup k [ 0 , 1 ] { | g ( k ) + p ( k ) | e τ k } ] 2 = g + p τ 2
for all g , p C ( [ 0 , 1 ] , R + ) , with these settings, ( C ( [ 0 , 1 ] , R + ) , d τ ) becomes a complete D . B . M . S . with constant b = 2 .
Now we prove the following theorem to ensure the existence of solution of integral equations. □
Theorem 5.
Assume the following conditions are satisfied:
(i) H 1 , H 2 : [ 0 , 1 ] × [ 0 , 1 ] × C ( [ 0 , 1 ] , R + ) R ;
(ii) Define
S g ( k ) = 0 k H 1 ( k , h , g ( h ) ) d h , T p ( k ) = 0 k H 2 ( k , h , p ( h ) ) d h .
Suppose there exist τ > 0 , such that
| H 1 ( k , h , g ) + H 2 ( k , h , p ) | τ M ( g , p ) τ M ( g , p ) τ + 1
for all k , h [ 0 , 1 ] and g , p C ( [ 0 , 1 ] , R ) , where
M ( g ( h ) , p ( h ) ) = η 1 [ | g ( h ) + p ( h ) | ] 2 + η 2 [ | g ( h ) + S g ( h ) | ] 2 + η 3 [ | g ( h ) + T p ( h ) | ] 2 + η 4 [ | g ( h ) + S g ( h ) | ] 4 · [ | p ( h ) + T p ( h ) | ] 2 1 + [ | g ( h ) + p ( h ) | ] 4 ,
where η 1 , η 2 , η 3 , η 4 0 , and 2 η 1 + 2 η 2 + 6 η 3 + η 4 < 1 . Then integral Equations ( 17 ) and ( 18 ) has a solution.
Proof. 
By assumption (ii)
| S g ( k ) + T p ( k ) | = 0 k | H 1 ( k , h , g ( h ) + H 2 ( k , h , p ( h ) ) ) | d h , 0 k τ τ M ( g , p ) τ + 1 ( [ M ( g , p ) ] e τ h ) e τ h d h 0 k τ τ M ( g , p ) τ + 1 M ( g , p ) τ e τ h d h
τ M ( g , p ) τ τ M ( g , p ) τ + 1 0 k e τ h d h , M ( g , p ) τ τ M ( g , p ) τ + 1 e τ k .
This implies
| S g ( k ) + T p ( k ) | e τ k M ( g , p ) τ τ M ( g , p ) τ + 1 .
S g ( k ) + T p ( k ) τ M ( g , p ) τ τ M ( g , p ) τ + 1 .
τ M ( g , p ) τ + 1 M ( g , p ) τ 1 S g ( k ) + T p ( k ) τ .
τ + 1 M ( g , p ) τ 1 S g ( k ) + T p ( k ) τ .
which further implies
τ 1 S g ( k ) + T p ( k ) τ 1 M ( g , p ) τ .
So all the conditions of Theorem 4 are satisfied for F ( p ) = 1 p ; p > 0 and d τ ( g , p ) = g + p τ 2 , b = 2 . Hence, the integral equations given in ( 17 ) and ( 18 ) has a unique common solution. □
Example 3.
Consider the integral equations
g ( k ) = 1 3 0 k g ( h ) d h ,     p ( k ) = 1 4 0 k p ( h ) ) d h ,   where   k [ 0 , 1 ] .
Define H 1 , H 2 : [ 0 , 1 ] × [ 0 , 1 ] × C ( [ 0 , 1 ] , R + ) R by H 1 = 1 3 g ( h ) , H 2 = 1 4 p ( h ) . Now,
S g ( k ) = 1 3 0 k g ( h ) d h ,     T p ( k ) = 1 4 0 k p ( h ) ) d h
Take η 1 = 1 10 , η 2 = 1 20 , η 3 = 1 60 , η 4 = 1 30 , τ = 12 95 , then 2 η 1 + 2 η 2 + 6 η 3 + η 4 < 1 . Moreover, all conditions of Theorem 5 are satisfied and g ( k ) = p ( k ) = 0 for all k , is a unique common solution to the above equations.

6. Conclusions

In the present paper, we have achieved fixed point results for new generalized F-contraction on an intersection of a closed ball and a sequence for a more general class of semi α * -dominated mappings rather than α * -admissible mappings, and for a weaker class of strictly increasing mappings F rather than a class of mappings F used by Wardowski [34]. The notion of multi graph dominated mapping is introduced. Fixed point results with graphic contractions on a closed ball for such mappings are established. Examples are given to demonstrate the variety of our results. An application is given to approximate the unique common solution of nonlinear integral equations. Moreover, we investigate our results in a better, new framework. New results in ordered spaces, partial b-metric space, dislocated metric space, partial metric space, b-metric space, and metric space can be obtained as corollaries of our results. One can further extend our results to fuzzy mappings, bipolar fuzzy mappings, and fuzzy neutrosophic soft mappings. More applications on delayed scaled consensus problems can be investigated (see [31]).

Author Contributions

Each author equally contributed to this paper, read and approved the final manuscript.

Funding

This article was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. Article processing charge will be given by DSR, King Abdulaziz University. Therefore, the authors acknowledge with thanks DSR, KAU, for financial support.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Abbas, M.; Ali, B.; Romaguera, S. Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory Appl. 2013, 2013, 243. [Google Scholar] [CrossRef] [Green Version]
  3. Acar, Ö.; Altun, I. A fixed point theorem for multivalued mappings with δ-Distance. Abstr. Appl. Anal. 2014, 2014, 497092. [Google Scholar] [CrossRef]
  4. Acar, Ö.; Durmaz, G.; Minak, G. Generalized multivalued F-contractions on complete metric spaces. Bull. Iranian Math. Soc. 2014, 40, 1469–1478. [Google Scholar]
  5. Ahmad, J.; Al-Rawashdeh, A.; Azam, A. Some new fixed Point theorems for generalized contractions in complete metric spaces. Fixed Point Theory Appl. 2015, 2015, 80. [Google Scholar] [CrossRef]
  6. Ameer, E.; Arshad, M. Two new generalization for F-contraction on closed ball and fixed point theorem with application. J. Math. Ext. 2017, 11, 1–24. [Google Scholar]
  7. Arshad, M.; Khan, S.U.; Ahmad, J. Fixed point results for F-contractions involving some new rational expressions. J. Fixed Point Theory Appl. 2016, 11, 79–97. [Google Scholar] [CrossRef]
  8. Aydi, H.; Bota, M.F.; Karapinar, E.; Mitrovi’c, S. Fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]
  9. Bojor, F. Fixed point theorems for Reich type contraction on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
  10. Boriceanu, M. Fixed Point theory for multivalued generalized contraction on a set with two b-metrics. Stud. Univ. Babes Bolyai Math. LIV 2009, 3, 1–14. [Google Scholar]
  11. Chen, C.; Wen, L.; Dong, J.; Gu, Y. Fixed point theorems for generalized F-contractions in b-metric-like spaces. J. Nonlinear Sci. Appl. 2016, 9, 2161–2174. [Google Scholar] [CrossRef]
  12. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis 1993, 1, 511. [Google Scholar]
  13. Hussain, N.; Ahmad, J.; Azam, A. On Suzuki-Wardowski type fixed point theorems. J. Nonlinear Sci. Appl. 2015, 8, 1095–1111. [Google Scholar] [CrossRef]
  14. Hussain, N.; Al-Mezel, S.; Salimi, P. Fixed points for ψ-graphic contractions with application to integral equations. Abstr. Appl. Anal. 2013, 2013, 575869. [Google Scholar] [CrossRef]
  15. Hussain, N.; Salimi, P. Suzuki-wardowski type fixed point theorems for α-GF-contractions. Taiwan. J. Math. 2014, 18, 1879–1895. [Google Scholar] [CrossRef]
  16. Hussain, N.; Roshan, J.R.; Paravench, V.; Abbas, M. Common Fixed Point results for weak contractive mappings in ordered dislocated b-metric space with applications. J. Inequal. Appl. 2013, 2013, 486. [Google Scholar] [CrossRef]
  17. Hussain, A.; Arshad, M.; Nazim, M. Connection of Ciric type F-contraction involving fixed point on closed ball. Ghazi Univ. J. Sci. 2017, 30, 283–291. [Google Scholar]
  18. Hussain, A.; Arshad, M.; Khan, S.U. τ-Generalization of fixed point results for F-contraction. Bangmod Int. J. Math. Comp. Sci. 2015, 1, 127–137. [Google Scholar]
  19. Hussain, A.; Arshad, M.; Nazam, M.; Khan, S.U. New type of results involving closed ball with graphic contraction. J. Ineq. Spec. Funct. 2016, 7, 36–48. [Google Scholar]
  20. Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 1, 1359–1373. [Google Scholar] [CrossRef]
  21. Khan, S.U.; Arshad, M.; Hussain, A.; Nazam, M. Two new types of fixed point theorems for F-contraction. J. Adv. Stud. Topol. 2016, 7, 251–260. [Google Scholar] [CrossRef]
  22. Kumari, P.S.; Alqahtani, O.; Karapınar, E. Some Fixed Point Theorem in b-Dislocated Metric Space and Applications. Symmetry 2018, 10, 691. [Google Scholar] [CrossRef]
  23. Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
  24. Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef]
  25. Piri, H.; Rahrovi, S.; Morasi, H.; Kumam, P. Fixed point theorem for F-Khan-contractions on complete metric spaces and application to the integral equations. J. Nonlinear Sci. Appl. 2017, 10, 4564–4573. [Google Scholar] [CrossRef]
  26. Rasham, T.; Shoaib, A.; Alamri, B.A.S.; Arshad, M. Multivalued Fixed Point Results for New Generalized F-Dominated Contractive Mappings on Dislocated Metric Space with Application. J. Funct. Spaces 2018, 2018, 4808764. [Google Scholar] [CrossRef]
  27. Rasham, T.; Shoaib, A.; Hussain, N.; Arshad, M.; Khan, S.U. Common fixed point results for new Ciric-type rational multivalued F-contraction with an application. J. Fixed Point Theory. Appl. 2018, 20, 45. [Google Scholar] [CrossRef]
  28. Secelean, N.A. Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [Google Scholar] [CrossRef]
  29. Sgroi, M.; Vetro, C. Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat 2013, 27, 1259–1268. [Google Scholar] [CrossRef]
  30. Shang, Y. A combinatorial necessary and sufficient condition for cluster consensus. Neurocomputing 2016, 216, 611–616. [Google Scholar] [CrossRef] [Green Version]
  31. Shang, Y. On the Delayed Scaled Consensus Problems. Appl. Sci. 2017, 7, 713. [Google Scholar] [CrossRef]
  32. Shoaib, A.; Hussain, A.; Arshad, M.; Azam, A. Fixed point results for α*-ψ-Ciric type multivalued mappings on an intersection of a closed ball and a sequence with graph. J. Math. Anal. 2016, 7, 41–50. [Google Scholar]
  33. Tiammee, J.; Suantai, S. Coincidence point theorems for graph-preserving multi-valued mappings. Fixed Point Theory Appl. 2014, 2014, 70. [Google Scholar] [CrossRef] [Green Version]
  34. Wardowski, D. Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Rasham, T.; Shoaib, A.; Hussain, N.; Alamri, B.A.S.; Arshad, M. Multivalued Fixed Point Results in Dislocated b-Metric Spaces with Application to the System of Nonlinear Integral Equations. Symmetry 2019, 11, 40. https://doi.org/10.3390/sym11010040

AMA Style

Rasham T, Shoaib A, Hussain N, Alamri BAS, Arshad M. Multivalued Fixed Point Results in Dislocated b-Metric Spaces with Application to the System of Nonlinear Integral Equations. Symmetry. 2019; 11(1):40. https://doi.org/10.3390/sym11010040

Chicago/Turabian Style

Rasham, Tahair, Abdullah Shoaib, Nawab Hussain, Badriah A. S. Alamri, and Muhammad Arshad. 2019. "Multivalued Fixed Point Results in Dislocated b-Metric Spaces with Application to the System of Nonlinear Integral Equations" Symmetry 11, no. 1: 40. https://doi.org/10.3390/sym11010040

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop