On a ℤ2n-Graded Version of Supersymmetry
Abstract
:1. Introduction
2. Preliminaries
2.1. -Manifolds and Their Basic Geometry
2.2. A Toy -Superspace
2.3. Majorana Spinors
2.4. -Graded Majorana Spinors
3. -Extended Supersymmetry
3.1. A -Extended Poincaré Algebra
3.2. Direct Consequences of the Algebra
- Positivity of energy: a direct computation shows (no sum over I). Then, passing to the representation as Hermitian operators allow us to write and thus for any state
- Irreducible representations of supersymmetry carry the same value of : this follows from , which implies that is a Casimir.
- The spin of each state in a multiplet varies in steps of 1/2: this follows from .
3.3. -Minkowski Space-Time
3.4. Invariant Differential Forms
3.5. Superfields
3.6. -Minkowski Space-Time
4. Closing Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Gervais, J.-L.; Sakita, B. Field theory interpretation of supergauges in dual models. Nucl. Phys. B 1971, 34, 632–639. [Google Scholar] [CrossRef]
- Gol’fand, Y.; Lichtman, E. Extension of the Algebra of Poincare Group Generators and Violation of P Invariance. JETP Lett. 1971, 13, 323. [Google Scholar]
- Volkov, D.; Akulov, V. Possible Universal Neutrino Interaction. JETP Lett. 1972, 16, 438. [Google Scholar]
- Wess, J.; Zumino, B. Supergauge transformations in four dimensions. Nucl. Phys. B 1974, 70, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Autermann, C. Experimental status of supersymmetry after the LHC Run-I. Prog. Part. Nucl. Phys. 2016, 90, 125–155. [Google Scholar] [CrossRef] [Green Version]
- Kaku, M. Introduction to Superstrings and M-Theory, 2nd ed.; Graduate Texts in Contemporary Physics; Springer: New York, NY, USA, 1999. [Google Scholar]
- Berezin, F.A.; Leĭtes, D.A. Supermanifolds. Soviet Math. Dokl. 1976, 16, 1218–1222. [Google Scholar]
- Mac Lane, S. Homology; Academic Press, Inc.: New York, NY, USA; Springer: Berlin/Heidelberg, Germany; Göttingen, Germany, 1963. [Google Scholar]
- Salam, A.; Strathdee, J. Super-gauge transformations. Nucl. Phys. B 1974, 76, 477–482. [Google Scholar] [CrossRef]
- Kuzenko, S.M. Lectures on nonlinear sigma-models in projective superspace. J. Phys. A 2010, 43, 443001. [Google Scholar] [CrossRef]
- Lindström, U.; Roček, M. Properties of hyperkahler manifolds and their twistor spaces. Commun. Math. Phys. 2010, 293, 257. [Google Scholar] [CrossRef]
- Galperin, A.S.; Ivanov, E.A.; Ogievetsky, V.I.; Sokatchev, E.S. Harmonic Superspace; Corrected Reprint of the 2001 Original; Cambridge University Press: Cambridge, MA, USA, 2007. [Google Scholar]
- West, P. Introduction to Supersymmetry and Supergravity, 2nd ed.; World Scientific Publishing Co., Inc.: Teaneck, NJ, USA, 1990. [Google Scholar]
- Wess, J.; Bagger, J. Supersymmetry and Supergravity, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Gates, S.J.; Grisaru, M.T.; Roček, M.; Siegel, W. Superspace. One Thousand and One Lessons in Supersymmetry; Benjamin/Cummings Publishing Co., Inc., Advanced Book Program: Reading, MA, USA, 1983. [Google Scholar]
- Duplij, S.; Siegel, W.; Bagger, J. Concise Encyclopedia of Supersymmetry and Noncommutative Structures in Mathematics and Physics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Connes, A.; Douglas, M.; Schwarz, A. Noncommutative geometry and matrix theory: Compactification on tori. J. High Energy Phys. 1998, 35. [Google Scholar] [CrossRef]
- Ferrara, S.; Lledó, M.A.; Macia, O. Supersymmetry in noncommutative superspaces. J. High Energy Phys. 2003, 068. [Google Scholar] [CrossRef]
- Schwarz, A. Noncommutative supergeometry, duality and deformations. Nucl. Phys. B 2003, 650, 475–496. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.H.; van Nieuwenhuizen, P. Speculation concerning a fermionic substructure of space-time. Lett. Nuovo Cimento 1982, 34, 21–25. [Google Scholar] [CrossRef]
- Seiberg, N. Noncommutative superspace, = 1/2 supersymmetry, field theory and string theory. J. High Energy Phys. 2003, 10. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 9. [Google Scholar] [CrossRef]
- Frydryszak, A. Nilpotent classical mechanics. Int. J. Mod. Phys. A 2007, 22, 2513–2533. [Google Scholar] [CrossRef]
- Frydryszak, A. Nilpotent quantum mechanics. Int. J. Mod. Phys. A 2010, 25, 951–983. [Google Scholar] [CrossRef]
- Frydryszak, A. Nilpotent Quantum Mechanics and SUSY. Part. Nucl. Lett. 2011, 8, 279–281. [Google Scholar] [CrossRef]
- Green, H.S. A generalized method of field quantization. Phys. Rev. 1953, 90, 270–273. [Google Scholar] [CrossRef]
- Volkov, D.V. On the quantization of half-integer spin fields. Soviet Phys. JETP 1959, 9, 1107–1111. [Google Scholar]
- Zheltukhin, A.A. On a para-Grassmann extension of the Neveu-Schwarz-Ramond algebra. Teoret. Mat. Fiz. 1987, 71, 218–225. [Google Scholar] [CrossRef]
- Vasil’ev, M.A. de Sitter supergravity with positive cosmological constant and generalised Lie superalgebras. Class. Quantum Gravity 1985, 2, 645–659. [Google Scholar] [CrossRef]
- Yang, W.; Jing, S. A new kind of graded Lie algebra and parastatistical supersymmetry. Sci. China Ser. A 2001, 44, 1167–1173. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Jing, S.; Ping, L. Graded Lie algebra generating of parastatistical algebraic relations. Commun. Theor. Phys. 2001, 36, 647–650. [Google Scholar]
- Aizawa, N.; Kuznetsova, Z.; Tanaka, H.; Toppan, F. × -graded Lie Symmetries of the Lévy-Leblond Equations. Prog. Theor. Exp. Phys. 2016, 123A01. [Google Scholar] [CrossRef]
- Tolstoy, V.N. Super-de Sitter and alternative super-Poincaré symmetries. In Lie Theory and Its Applications in Physics; Springer: Berlin, Germany, 2014. [Google Scholar]
- de Goursac, A. Noncommutative supergeometry and quantum supergroups. J. Phys. Conf. Ser. 2015, 597, 012028. [Google Scholar] [CrossRef] [Green Version]
- Grosse, H.; Reiter, G. Simple fuzzy (super)spaces. Int. J. Mod. Phys. B 2000, 14, 2467–2470. [Google Scholar] [CrossRef]
- Haag, R.; Opuszański, J.T.; Sohnius, M. All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B 1975, 88, 257–274. [Google Scholar] [CrossRef]
- Covolo, T.; Grabowski, J.; Poncin, N. The category of -supermanifolds. J. Math. Phys. 2016, 57, 073503. [Google Scholar] [CrossRef]
- Covolo, T.; Grabowski, J.; Poncin, N. Splitting theorem for -supermanifolds. J. Geom. Phys. 2016, 110, 393–401. [Google Scholar] [CrossRef]
- Covolo, T.; Kwok, S.; Poncin, N. Differential calculus on -supermanifolds. arXiv, 2016; arXiv:1608.00949. [Google Scholar]
- Covolo, T.; Kwok, S.; Poncin, N. The Frobenius theorem for -supermanifolds. arXiv, 2016; arXiv:1608.00961. [Google Scholar]
- Molotkov, V. Infinite-dimensional and colored supermanifolds. J. Nonlinear Math. Phys. 2010, 17, 375–446. [Google Scholar] [CrossRef]
- Marcinek, M. Colour superspaces and supermanifolds. Rep. Math. Phys. 1991, 29, 55–74. [Google Scholar] [CrossRef]
- Grabowski, J.; Rotkiewicz, M. Higher vector bundles and multi-graded symplectic manifolds. J. Geom. Phys. 2009, 59, 1285–1305. [Google Scholar] [CrossRef] [Green Version]
- Voronov, T. Graded manifolds and Drinfeld doubles for Lie bialgebroids. In Quantization, Poisson Brackets and Beyond; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Covolo, T.; Ovsienko, V.; Poncin, N. Higher trace and Berezinian of matrices over a Clifford algebra. J. Geom. Phys. 2012, 62, 2294–2319. [Google Scholar] [CrossRef] [Green Version]
- Rittenberg, V.; Wyler, D. Generalized superalgebras. Nucl. Phys. B 1978, 139, 189–202. [Google Scholar] [CrossRef]
- Scheunert, M. Generalized Lie algebras. J. Math. Phys. 1979, 20, 712–720. [Google Scholar] [CrossRef]
- Bruce, A.J.; Poncin, N. Functional analytic issues in -Geometry. arXiv, 2018; arXiv:1807.11739v1. [Google Scholar]
- Bruce, A.J.; Poncin, N. Products in the category of -manifolds. arXiv, 2018; arXiv:1807.11740v1. [Google Scholar]
- Bellucci, S.; Krivonos, S. Supersymmetric mechanics in superspace. Lect. Notes Phys. 2006, 698, 49–96. [Google Scholar]
- Beckers, J.; Debergh, N. Poincaré invariance and quantum parasuperfields. Int. J. Mod. Phys. A 1993, 8, 5041–5061. [Google Scholar] [CrossRef]
- Nikitin, A.G.; Galkin, V.A. Extended Poincaré parasuperalgebra with central charges and invariant wave equations. J. Phys. A 2000, 33, 8525–8547. [Google Scholar] [CrossRef]
- Jarvis, P.D. A parafermion generalization of Poincaré supersymmetry. Aust. J. Phys. 1978, 31, 461–469. [Google Scholar] [CrossRef]
- Witten, E.; Olive, D.I. Supersymmetry Algebras That Include Topological Charges. Phys. Lett. B 1978, 78, 97–101. [Google Scholar] [CrossRef]
- Duplij, S.A.; Soroka, D.V.; Soroka, V.A.J. A special fermionic generalization of lineal gravity. Zhejiang Univ. Sci. A 2006, 7, 629. [Google Scholar] [CrossRef]
- Le Roy, B. -graded colored supersymmetry. Czech. J. Phys. 1997, 47, 47–54. [Google Scholar] [CrossRef]
- Deligne, P.; Freed, D.S. Sign manifesto. In Quantum Fields and Strings: A Course for Mathematicians; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Rubakov, V.A.; Spiridonov, V.P. Parasupersymmetric quantum mechanics. Mod. Phys. Lett. A 1988, 3, 1337–1347. [Google Scholar] [CrossRef]
- Araki, H. On the connection of spin and commutation relations between different fields. J. Math. Phys. 1961, 2, 267–270. [Google Scholar] [CrossRef]
- Doplicher, S.; Roberts, J.E. Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 1990, 131, 51–107. [Google Scholar] [CrossRef]
- Drühl, K.; Haag, R.; Roberts, J.E. On parastatistics. Commun. Math. Phys. 1970, 18, 204–226. [Google Scholar] [CrossRef]
- Baker, D.J.; Halvorson, H.; Swanson, N. The conventionality of parastatistics. Br. J. Philos. Sci. 2015, 66, 929–976. [Google Scholar] [CrossRef]
- Greenberg, O.W.; Messiah, A.M.L. Selection rules for parafields and the absence of para particles in nature. Phys. Rev. 1965, 138, 1155–1167. [Google Scholar] [CrossRef]
- Kitabayashi, T.; Yasuè, M. Parafermionic dark matter. Phys. Rev. D 2018, 98, 043504. [Google Scholar] [CrossRef]
- Nelson, C.A.; Kraynova, M.; Mera, C.S.; Shapiro, A.M. Diagrams and Parastatistical Factors for Cascade Emission of a Pair of Paraparticles. Phys. Rev. D 2016, 93, 034039. [Google Scholar] [CrossRef]
- Moffat, J.W. Charge Conjugation Invariance of the Vacuum and the Cosmological Constant Problem. Phys. Lett. B 2005, 627, 9–17. [Google Scholar] [CrossRef]
- Manin, Y.I. Topics in Noncommutative Geometry; Princeton University Press: Princeton, NJ, USA, 1991. [Google Scholar]
- Poncin, N. Towards integration on colored supermanifolds. In Geometry of Jets and Fields; Banach Center Publications: Warsaw, Poland, 2016. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruce, A.J.
On a ℤ2n-Graded Version of Supersymmetry
. Symmetry 2019, 11, 116.
https://doi.org/10.3390/sym11010116
Bruce AJ.
On a ℤ2n-Graded Version of Supersymmetry
. Symmetry. 2019; 11(1):116.
https://doi.org/10.3390/sym11010116
Bruce, Andrew James.
2019. "On a ℤ2n-Graded Version of Supersymmetry
" Symmetry 11, no. 1: 116.
https://doi.org/10.3390/sym11010116