# Perception of 3D Symmetrical and Nearly Symmetrical Shapes

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. 3D Shapes, 2D Orthographic Projections and 3D Recovery

## 3. Psychophysical Experiment on 3D Shape Recovery

#### 3.1. Stimuli

#### 3.2. Procedure

## 4. Model

## 5. Control Experiment

## 6. Results

## 7. Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. A 2D Orthographic Image of an Asymmetrical 3D Shape in our Experiment Allows for Recovering 3D Symmetrical Shapes

## References

- Hochberg, J.; McAlister, E. A quantitative approach, to figural “goodness”. J. Exp. Psychol.
**1953**, 46, 361. [Google Scholar] [CrossRef] [PubMed] - Wallach, H.; O’connell, D. The kinetic depth effect. J. Exp. Psychol.
**1953**, 45, 205–217. [Google Scholar] [CrossRef] [PubMed] - Hay, J.C. Optical motions and space perception: An extension of Gibson’s analysis. Psychol. Rev.
**1966**, 73, 550. [Google Scholar] [CrossRef] [PubMed] - Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lond. B
**1979**, 203, 405–426. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Longuet-Higgins, H.C. A computer algorithm for reconstructing a scene from two projections. Nature
**1981**, 293, 133–135. [Google Scholar] [CrossRef] - Kopfermann, H. Psychologische untersuchungen über die wirkung zweidimensionaler darstellungen körperlicher Gebilde. Psychol. Forsch.
**1930**, 13, 293–364. [Google Scholar] [CrossRef] - Perkins, D.N. How good a bet is good form? Percept.
**1976**, 5, 393–406. [Google Scholar] [CrossRef] [PubMed] - Witkin, A.P. Recovering surface shape and orientation from texture. Artif. Intell.
**1981**, 17, 17–45. [Google Scholar] [CrossRef] - Brady, M.; Yuille, A. Inferring 3D orientation from 2D contour (an extremum principle). In Natural Computation; MIT Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Sugihara, K. Machine Interpretation of Line Drawings; MIT Press: Cambridge, MA, USA, 1986; Volume 2. [Google Scholar]
- Marill, T. Emulating the human interpretation of line-drawings as three-dimensional objects. Int. J. Comput. Vis.
**1991**, 6, 147–161. [Google Scholar] [CrossRef] - Leclerc, Y.G.; Fischler, M.A. An optimization-based approach to the interpretation of single line drawings as 3D wire frames. Int. J. Comput. Vis.
**1992**, 9, 113–136. [Google Scholar] [CrossRef] [Green Version] - Poggio, T.; Torre, V.; Koch, C. Computational vision and regularization theory. Nature
**1985**, 317, 314–319. [Google Scholar] [CrossRef] [PubMed] - Pizlo, Z.; Rosenfeld, A.; Weiss, I. The geometry of visual space: About the incompatibility between science and mathematics. Comput. Vis. Image Understand.
**1997**, 65, 425–433. [Google Scholar] [CrossRef] - Pizlo, Z. Perception viewed as an inverse problem. Vis. Res.
**2001**, 41, 3145–3161. [Google Scholar] [CrossRef] - Sawada, T.; Pizlo, Z. Detection of skewed symmetry. J. Vis.
**2008**, 8, 14. [Google Scholar] [CrossRef] [PubMed] - Wagemans, J. Characteristics and models of human symmetry detection. Trends Cogn. Sci.
**1997**, 1, 346–352. [Google Scholar] [CrossRef] [Green Version] - Makin, A.D.; Rampone, G.; Bertamini, M. Conditions for view invariance in the neural response to visual symmetry. Psychophysiology
**2015**, 52, 532–543. [Google Scholar] [CrossRef] [PubMed] - Saunders, J.A.; Knill, D.C. Perception of 3D surface orientation from skew symmetry. Vis. Res.
**2001**, 41, 3163–3183. [Google Scholar] [CrossRef] [Green Version] - Van der Vloed, G.; Csatho, A.; van der Helm, P.A. Symmetry and repetition in perspective. Acta Psychol.
**2005**, 120, 74–92. [Google Scholar] [CrossRef] [PubMed] - Steiner, G. Spiegelsymmetrie der Tierkörper. Naturwiss. Rundsch.
**1979**, 32, 481–485. [Google Scholar] - Rock, I.; DiVita, J. A case of viewer-centered object perception. Cogn. Psychol.
**1987**, 19, 280–293. [Google Scholar] [CrossRef] - Pizlo, Z.; Stevenson, A.K. Shape constancy from novel views. Percept. Psychophys.
**1999**, 61, 1299–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Li, Y.; Pizlo, Z. Depth cues versus the simplicity principle in 3D shape perception. Top. Cogn. Sci.
**2011**, 3, 667–685. [Google Scholar] [CrossRef] [PubMed] - Biederman, I.; Gerhardstein, P.C. Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. J. Exp. Psychol.-Hum. Percep. Perf.
**1993**, 19, 1162. [Google Scholar] [CrossRef] - Li, Y.; Pizlo, Z.; Steinman, R.M. A computational model that recovers the 3D shape of an object from a single 2D retinal representation. Vis. Res.
**2009**, 49, 979–991. [Google Scholar] [CrossRef] [PubMed] - Li, Y.; Sawada, T.; Shi, Y.; Kwon, T.; Pizlo, Z. A Bayesian model of binocular perception of 3D mirror symmetrical polyhedra. J. Vis.
**2011**, 11, 11. [Google Scholar] [CrossRef] [PubMed] - Vetter, T.; Poggio, T. Symmetric 3D objects are an easy case for 2D object recognition. Spat. Vis.
**1994**, 8, 443–453. [Google Scholar] [CrossRef] [PubMed] - Sawada, T. Visual detection of symmetry of 3D shapes. J. Vis.
**2010**, 10, 4. [Google Scholar] [CrossRef] [PubMed] - Pizlo, Z.; Li, Y.; Sawada, T.; Steinman, R. Making a Machine that Sees Like Us; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Pizlo, Z.; Sawada, T.; Li, Y.; Kropatsch, W.G.; Steinman, R.M. New approach to the perception of 3D shape based on veridicality, complexity, symmetry and volume. Vis. Res.
**2010**, 50, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Todd, J.T.; Bressan, P. The perception of 3-dimensional affine structure from minimal apparent motion sequences. Percep. Psychophys.
**1990**, 48, 419–430. [Google Scholar] [CrossRef] [Green Version] - Chan, M.W.; Stevenson, A.K.; Li, Y.; Pizlo, Z. Binocular shape constancy from novel views: The role of a priori constraints. Atten. Percep. Psychophys.
**2006**, 68, 1124–1139. [Google Scholar] [CrossRef] [Green Version] - Howard, I.; Rogers, B. Seeing in Depth: Depth Perception; Oxford University Press: New York, NY, USA, 2008; Volume 2. [Google Scholar]
- Sawada, T.; Li, Y.; Pizlo, Z. Any pair of 2D curves is consistent with a 3D symmetric interpretation. Symmetry
**2011**, 3, 365–388. [Google Scholar] [CrossRef]

**Figure 1.**An example of a symmetrical polyhedron. The “top” of the shape is shown in (

**a**), (

**b**) shows the flat (planar) “bottom” of the shape and (

**c**) shows the shape’s coordinate system.

**Figure 2.**Perceived vs. real asymmetry of shapes for (

**a**) subject EP (binocular); (

**b**) subject EP (monocular); (

**c**) subject VJ (binocular); (

**d**) subject VJ (monocular); (

**e**) subject ZP (binocular) and (

**f**) subject ZP (monocular).

**Figure 3.**Accuracy in identifying symmetrical and asymmetrical shapes in (

**a**) binocular and (

**b**) monocular condition. Recall that there were 30 symmetrical and 60 asymmetrical shapes.

**Figure 4.**Perceived vs. real angles (first column, in radians) and depth (second column) for three different symmetric shapes. Each row represents the corresponding plots for a particular shape. (

**a**) and (

**b**) represent the plots for the shape in (row = 2, column = 5) in set 2; (

**c**) and (

**d**) represent the plots for the shape in (row = 2, column = 6) in set 5 and (

**e**) and (

**f**) represent the plots for the shape in (row = 3, column = 3) in set 3 on the https://lorenz.ecn.purdue.edu/~vthottat/shapeexp/chooseshp.php.

**Figure 5.**Subject shape vs. reference shape depth plots for symmetrical shapes for (

**a**) subject EP (binocular); (

**b**) subject EP (monocular); (

**c**) subject VJ (binocular); (

**d**) subject VJ (monocular); (

**e**) subject ZP (binocular) and (

**f**) subject ZP (monocular). The numbers 45 and 70 indicate viewing directions. The green x marks include both 20${}^{\circ}$ and 70${}^{\circ}$ viewing directions.

**Figure 6.**Perceived vs. real depth plots for asymmetric shapes for subject VJ in (

**a**) binocular and (

**b**) monocular condition.

**Figure 7.**Shape dissimilarity for (

**a**) subject EP (binocular); (

**b**) subject EP (monocular); (

**c**) subject VJ (binocular); (

**d**) subject VJ (monocular); (

**e**) subject ZP (binocular) and (

**f**) subject ZP (monocular).

**Figure 8.**Subject vs. model shape difference, as function of the model weights, for symmetrical shapes, for the subject EP, in the binocular condition. (

**a**) and (

**b**) represent two views of the same shape difference plot.

**Figure 9.**Two views ((

**a**) and (

**b**)) of the subject vs. model shape difference, as function of the model weights, for asymmetrical shapes, for the subject EP, in the binocular condition.

**Figure 10.**Shape difference for asymmetric shapes in the monocular condition as a function of the weight of the symmetry term.

Symmetry | $\mathbf{asym}$ = 0. 00 | 0.01 < $\mathbf{asym}$ < 0.11 | $\mathbf{asym}$ > 0.11 | |
---|---|---|---|---|

Compactness | ||||

$cmp$ > 0.38 | Group 1 | Group 2 | Group 3 | |

0.2 < $cmp$ < 0.38 | Group 4 | Group 5 | Group 6 | |

$cmp$ < 0.20 | Group 7 | Group 8 | Group 9 |

Subject | ${\mathit{W}}_{\mathit{S}}$ |
---|---|

EP | 5.1 |

VJ | 3 |

ZP | 4 |

Subject | ${\mathit{W}}_{\mathit{S}}$ (Symmetrical Case) | ${\mathit{W}}_{\mathit{D}}$ (Symmetrical Case) | ${\mathit{W}}_{\mathit{S}}$ (Asymmetrical Case) | ${\mathit{W}}_{\mathit{D}}$ (Asymmetrical Case) |
---|---|---|---|---|

EP | 9.7 | 8.6 | 10 | 1 |

VJ | 7.6 | 11.5 | 4 | 5.8 |

ZP | 9.0 | 14.0 | 5 | 0.3 |

Subject | Condition | Number of times (out of 90) the model shape was chosen |
---|---|---|

EP | Monocular | 62 (68.8%) |

EP | Binocular | 48 (53.3%) |

VJ | Monocular | 40 (44.4%) |

VJ | Binocular | 46 (51.1%) |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jayadevan, V.; Sawada, T.; Delp, E.; Pizlo, Z.
Perception of 3D Symmetrical and Nearly Symmetrical Shapes. *Symmetry* **2018**, *10*, 344.
https://doi.org/10.3390/sym10080344

**AMA Style**

Jayadevan V, Sawada T, Delp E, Pizlo Z.
Perception of 3D Symmetrical and Nearly Symmetrical Shapes. *Symmetry*. 2018; 10(8):344.
https://doi.org/10.3390/sym10080344

**Chicago/Turabian Style**

Jayadevan, Vijai, Tadamasa Sawada, Edward Delp, and Zygmunt Pizlo.
2018. "Perception of 3D Symmetrical and Nearly Symmetrical Shapes" *Symmetry* 10, no. 8: 344.
https://doi.org/10.3390/sym10080344