On p-Adic Fermionic Integrals of q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials †
Abstract
:1. Introduction
2. -Bernstein Polynomials Associated with -Euler Numbers and Polynomials
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Açikgöz, M.; Erdal, D.; Araci, S. A new approach to q-Bernoulli numbers and q-Bernoulli polynomials related to q-Bernstein polynomials. Adv. Differ. Equ. 2010, 2015, 272. [Google Scholar] [CrossRef]
- Araci, S.; Acikgoz, M. A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 399–406. [Google Scholar]
- Bernstein, S. Démonstration du théorème de Weierstrass fondée sur le calcul des probabilities. Commun. Soc. Math. Kharkov 1912, 2, 1–2. [Google Scholar]
- Bayad, A.; Kim, T. Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 2011, 18, 133–143. [Google Scholar] [CrossRef]
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 1979, 15, 51–88. [Google Scholar]
- Goodman, T.N.T.; Oruç, H.; Phillips, G.M. Convexity and generalized Bernstein polynomials. Proc. Edinb. Math. Soc. 1999, 42, 179–190. [Google Scholar] [CrossRef]
- Kim, T.; Choi, J.; Kim, Y.-H. On the k-dimensional generalization of q-Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14, 199–207. [Google Scholar]
- Kim, T. A note on q-Bernstein polynomials. Russ. J. Math. Phys. 2011, 18, 73–82. [Google Scholar] [CrossRef]
- Kim, T.; Choi, J.; Kim, Y.-H. Some identities on the q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli numbers. Adv. Stud. Contemp. Math. (Kyungshang) 2010, 20, 335–341. [Google Scholar]
- Kim, T.; Lee, B.; Choi, J.; Kim, Y.-H.; Rim, S.H. On the q-Euler numbers and weighted q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2011, 21, 13–18. [Google Scholar]
- Kim, T. Identities on the weighted q-Euler numbers and q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 7–12. [Google Scholar] [CrossRef]
- Kim, T. A study on the q-Euler numbers and the fermionic q-integral of the product of several type q-Bernstein polynomials on . Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23, 5–11. [Google Scholar]
- Kim, T.; Ryoo, C. S.; Yi, H. A note on q-Bernoulli numbers and q-Bernstein polynomials. Ars Comb. 2012, 104, 437–447. [Google Scholar]
- Kurt, V. Some relation between the Bernstein polynomials and second kind Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23, 43–48. [Google Scholar]
- Oruç, H.; Phillips, G.M. A generalization of Bernstein polynomials. Proc. Edinb. Math. Soc. 1999, 42, 403–413. [Google Scholar] [CrossRef]
- Oruç, H.; Tuncer, N. On the convergence and iterates of q-Bernstein polynomials. J. Approx. Theory 2002, 117, 301–313. [Google Scholar] [CrossRef]
- Ostrovska, S. q-Bernstein polynomials and their iterates. J. Approx. Theory 2003, 123, 232–255. [Google Scholar] [CrossRef]
- Ostrovska, S. On the q-Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2005, 11, 193–204. [Google Scholar]
- Ostrovska, S. On the q-Bernstein polynomials of the logarithmic function in the case q > 1. Math. Slovaca 2016, 66, 73–78. [Google Scholar] [CrossRef]
- Ostrovska, S. On the approximation of analytic functions by the q-Bernstein polynomials in the case q > 1. Electron. Trans. Numer. Anal. 2010, 37, 105–112. [Google Scholar]
- Park, J.-W.; Pak, H.K.; Rim, S.-H.; Kim, T.; Lee, S.-H. A note on the q-Bernoulli numbers and q-Bernstein polynomials. J. Comput. Anal. Appl. 2013, 15, 722–729. [Google Scholar]
- Phillips, G.M. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 1997, 4, 511–518. [Google Scholar]
- Phillips, G.M. A de Casteljau algorithm for generalized Bernstein polynomials. BIT 1997, 37, 232–236. [Google Scholar] [CrossRef]
- Phillips, G.M. A generalization of the Bernstein polynomials based on the q-integers. ANZIAM J. 2000, 42, 79–86. [Google Scholar] [CrossRef]
- Rim, S.-H.; Joung, J.; Jin, J.-H.; Lee, S.-J. A note on the weighted Carlitz’s type q-Euler numbers and q-Bernstein polynomials. Proc. Jangjeon Math. Soc. 2012, 15, 195–201. [Google Scholar]
- Ryoo, C.S. Some identities of the twisted q-Euler numbers and polynomials associated with q-Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14, 239–248. [Google Scholar]
- Simsek, Y.; Gunay, M. On Bernstein type polynomials and their applications. Adv. Differ. Equ. 2015, 2015, 79. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Agrawal, R.R.; Gupta, N. On a class of modified new Bernstein operators. Adv. Stud. Contemp. Math. (Kyungshang) 2014, 24, 97–107. [Google Scholar]
- Srivastava, H.M.; Mursaleen, M.; Alotaibi, A.M.; Nasiruzzaman, M.; Al-Abied, A.A.H. Some approximation results involving the q-Szász-Mirakyan-Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 2017, 40, 5437–5452. [Google Scholar] [CrossRef]
- Tunc, T.; Simsek, E. Some approximation properties of Szász-Mirakjan-Bernstein operators. Eur. J. Pure Appl. Math. 2014, 7, 419–428. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, L.-C.; Kim, T.; Kim, D.S.; Dolgy, D.V.
On p-Adic Fermionic Integrals of q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials
Jang L-C, Kim T, Kim DS, Dolgy DV.
On p-Adic Fermionic Integrals of q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials
Jang, Lee-Chae, Taekyun Kim, Dae San Kim, and Dmitry Victorovich Dolgy.
2018. "On p-Adic Fermionic Integrals of q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials
Jang, L.-C., Kim, T., Kim, D. S., & Dolgy, D. V.
(2018). On p-Adic Fermionic Integrals of q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials