Symmetric Identities for Fubini Polynomials
Abstract
:1. Introduction and Preliminaries
2. Symmetric Identities for -torsion Fubini and Two Variable -torsion Fubini Polynomials
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Kim, T. q-Volkenborn integration. Russ. J. Math. Phys. 2002, 9, 288–299. [Google Scholar]
- Kim, T. Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on . Russ. J. Math. Phys. 2009, 16, 93–96. [Google Scholar] [CrossRef]
- Kim, T. A study on the q-Euler numbers and the fermionic q-integral of the product of several type q-Bernstein polynomials on . Adv. Stud. Contemp. Math. 2013, 23, 5–11. [Google Scholar]
- Kim, D.S.; Park, K.H. Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under S3. Appl. Math. Comput. 2013, 219, 5096–5104. [Google Scholar] [CrossRef]
- Kilar, N.; Simsek, Y. A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605–1621. [Google Scholar]
- Kim, T.; Kim, D.S.; Jang, G.-W. A note on degenerate Fubini polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 521–531. [Google Scholar]
- Kim, Y.-H.; Hwang, K.-H. Symmery of power sum and twisted Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2009, 18, 127–133. [Google Scholar]
- Lee, J.G.; Kwon, J.; Jang, G.-W.; Jang, L.-C. Some identities of λ-Daehee polynomials. J. Nonlinear Sci. Appl. 2017, 10, 4137–4142. [Google Scholar] [CrossRef]
- Rim, S.-H.; Jeong, J.-H.; Lee, S.-J.; Moon, E.-J.; Jin, J.-H. On the symmetric properties for the generalized twisted Genocchi polynomials. ARS Comb. 2012, 105, 267–272. [Google Scholar]
- Rim, S.-H.; Moon, E.-J.; Jin, J.-H.; Lee, S.-J. On the symmetric properties for the generalized Genocchi polynomials. J. Comput. Anal. Appl. 2011, 13, 1240–1245. [Google Scholar]
- Seo, J.J.; Kim, T. Some identities of symmetry for Daehee polynomials arising from p-adic invariant integral on . Proc. Jangjeon Math. Soc. 2016, 19, 285–292. [Google Scholar]
- Ağyüz, E.; Acikgoz, M.; Araci, S. A symmetric identity on the q-Genocchi polynomials of higher-order under third dihedral group D3. Proc. Jangjeon Math. Soc. 2015, 18, 177–187. [Google Scholar]
- He, Y. Symmetric identities for Calitz’s q-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2013, 2013, 246. [Google Scholar] [CrossRef]
- Moon, E.-J.; Rim, S.-H.; Jin, J.-H.; Lee, S.-J. On the symmetric properties of higher-order twisted q-Euler numbers and polynoamials. Adv. Differ. Equ. 2010, 2010, 765259. [Google Scholar] [CrossRef]
- Ryoo, C.S. An identity of the symmetry for the second kind q-Euler polynomials. J. Comput. Anal. Appl. 2013, 15, 294–299. [Google Scholar]
- Kim, T.; Kim, D.S. An identity of symmetry for the degenerate Frobenius-Euler polynomials. Math. Slovaca 2018, 68, 239–243. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Identities of symmetry for degenerate Euler polynomials and alternating generalized falling factorial sums. Iran J. Sci. Technol. Trans. A Sci. 2017, 41, 939–949. [Google Scholar] [CrossRef]
- Carlitz, L. Eulerian numbers and polynomials. Math. Mag. 1959, 32, 247–260. [Google Scholar] [CrossRef]
- Milovanović, G.V.; Mitrinović, D.S.; Rassias, T.M. Topics in Polynomials: Extremal Problems, Inequalities, Zeros; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1994. [Google Scholar]
- Kim, D.S.; Kim, T. Triple symmetric identities for w-Catalan polynomials. J. Korean Math. Soc. 2017, 54, 1243–1264. [Google Scholar]
- Kim, D.S.; Lee, N.; Na, J.; Park, K.H. Identities of symmetry for higher-order Euler polynomials in the three varibles (I). Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 51–74. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, D.S.; Jang, G.-W.; Kwon, J. Symmetric Identities for Fubini Polynomials. Symmetry 2018, 10, 219. https://doi.org/10.3390/sym10060219
Kim T, Kim DS, Jang G-W, Kwon J. Symmetric Identities for Fubini Polynomials. Symmetry. 2018; 10(6):219. https://doi.org/10.3390/sym10060219
Chicago/Turabian StyleKim, Taekyun, Dae San Kim, Gwan-Woo Jang, and Jongkyum Kwon. 2018. "Symmetric Identities for Fubini Polynomials" Symmetry 10, no. 6: 219. https://doi.org/10.3390/sym10060219
APA StyleKim, T., Kim, D. S., Jang, G.-W., & Kwon, J. (2018). Symmetric Identities for Fubini Polynomials. Symmetry, 10(6), 219. https://doi.org/10.3390/sym10060219