Medical Diagnosis Based on SingleValued Neutrosophic Probabilistic Rough Multisets over Two Universes
Abstract
:1. Introduction
2. Preliminaries
2.1. SVNMs
 1.
 $A\oplus B=\left\{\u2329x,{T}_{A}^{i}\left(x\right)+{T}_{B}^{i}\left(x\right){T}_{A}^{i}\left(x\right){T}_{B}^{i}\left(x\right),{I}_{A}^{i}\left(x\right){I}_{B}^{i}\left(x\right),{F}_{A}^{i}\left(x\right){F}_{B}^{i}\left(x\right)\u232a\leftx\in U,i=1,2,\dots ,q\right.\right\}$;
 2.
 $A\otimes B=\left\{\u2329x,{T}_{A}^{i}\left(x\right){T}_{B}^{i}\left(x\right),{I}_{A}^{i}\left(x\right)+{I}_{B}^{i}\left(x\right){I}_{A}^{i}\left(x\right){I}_{B}^{i}\left(x\right),{F}_{A}^{i}\left(x\right)+{F}_{B}^{i}\left(x\right){F}_{A}^{i}\left(x\right){F}_{B}^{i}\left(x\right)\u232a\right.\leftx\in U,\right.$$\left.i=1,2,\dots ,q\right\}$;
 3.
 the complement of A is represented by ${A}^{c}$ such that $\forall x\in U$,${A}^{c}=\left\{\u2329x,{F}_{A}^{i}\left(x\right),1{I}_{A}^{i}\left(x\right),{T}_{A}^{i}\left(x\right)\u232a\leftx\in U,i=1,2,\dots ,q\right.\right\}$;
 4.
 the union of A and B is represented by $A\cup B$ such that $\forall x\in U$,$A\cup B=\left\{\u2329x,{T}_{A}^{i}\left(x\right)\vee {T}_{B}^{i}\left(x\right),{I}_{A}^{i}\left(x\right)\wedge {I}_{B}^{i}\left(x\right),{F}_{A}^{i}\left(x\right)\wedge {F}_{B}^{i}\left(x\right)\u232a\leftx\in U,i=1,2,\dots ,q\right.\right\}$;
 5.
 the intersection of A and B is represented by $A\cap B$ such that $\forall x\in U$,$A\cap B=\left\{\u2329x,{T}_{A}^{i}\left(x\right)\wedge {T}_{B}^{i}\left(x\right),{I}_{A}^{i}\left(x\right)\vee {I}_{B}^{i}\left(x\right),{F}_{A}^{i}\left(x\right)\vee {F}_{B}^{i}\left(x\right)\u232a\leftx\in U,i=1,2,\dots ,q\right.\right\}$.
2.2. PRSs
3. Probabilistic Rough Approximations of a SVNM under the Background of Two Universes
3.1. Relations on SVNMs Based on Two Universes and Some Operations
 1.
 $A\ominus B=\left\{\u2329x,\frac{{T}_{A}^{i}\left(x\right){T}_{B}^{i}\left(x\right)}{1{T}_{B}^{i}\left(x\right)},\frac{{I}_{A}^{i}\left(x\right)}{{I}_{B}^{i}\left(x\right)},\frac{{F}_{A}^{i}\left(x\right)}{{F}_{B}^{i}\left(x\right)}\u232a\leftx\in U,i=1,2,\dots ,q\right.\right\}$, which is valid under the requirements $A\ge B$, ${T}_{B}^{i}\left(x\right)\ne 1$, ${I}_{B}^{i}\left(x\right)\ne 0$ and ${F}_{B}^{i}\left(x\right)\ne 0$;
 2.
 $A\oslash B=\left\{\u2329x,\frac{{T}_{A}^{i}\left(x\right)}{{T}_{B}^{i}\left(x\right)},\frac{{I}_{A}^{i}\left(x\right){I}_{B}^{i}\left(x\right)}{1{I}_{B}^{i}\left(x\right)},\frac{{F}_{A}^{i}\left(x\right){F}_{B}^{i}\left(x\right)}{1{F}_{B}^{i}\left(x\right)}\u232a\leftx\in U,i=1,2,\dots ,q\right.\right\}$, which is valid under the requirements $A\le B$, ${T}_{B}^{i}\left(x\right)\ne 0$, ${I}_{B}^{i}\left(x\right)\ne 1$ and ${F}_{B}^{i}\left(x\right)\ne 1$.
 1.
 If $s\left({x}_{1}\right)<s\left({x}_{2}\right)$, then ${x}_{1}<{x}_{2}$;
 2.
 If $s\left({x}_{1}\right)=s\left({x}_{2}\right)$, then ${x}_{1}={x}_{2}$;
 3.
 If $s\left({x}_{1}\right)>s\left({x}_{2}\right)$, then ${x}_{1}>{x}_{2}$.
3.2. SVNRMs over Two Universes
3.3. PRSVNMs over Two Universes
3.4. SVNPRMs over Two Universes
 1.
 $A\subseteq B\Rightarrow {\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\right)\subseteq {\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(B\right)$, ${\overline{SVNMR}}_{{}_{P}}^{\beta}\left(A\right)\subseteq {\overline{SVNMR}}_{{}_{P}}^{\beta}\left(B\right)$;
 2.
 ${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(\varnothing \right)=\varnothing $, ${\overline{SVNMR}}_{{}_{P}}^{\beta}\left(V\right)=U$;
 3.
 ${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\right)\subseteq {\overline{SVNMR}}_{{}_{P}}^{\beta}\left(A\right)$;
 4.
 ${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\cap B\right)\subseteq {\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\right)\cap {\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(B\right)$, ${\overline{SVNMR}}_{{}_{P}}^{\beta}\left(A\cup B\right)\supseteq {\overline{SVNMR}}_{{}_{P}}^{\beta}\left(A\right)\cup {\overline{SVNMR}}_{{}_{P}}^{\beta}\left(B\right)$;
 5.
 ${\alpha}_{1}\le {\alpha}_{2}\Rightarrow {\underline{SVNMR}}_{{}_{P}}^{{\alpha}_{2}}\left(A\right)\subseteq {\underline{SVNMR}}_{{}_{P}}^{{\alpha}_{1}}\left(A\right)$, ${\beta}_{1}\le {\beta}_{2}\Rightarrow {\overline{SVNMR}}_{{}_{P}}^{{\beta}_{2}}\left(A\right)\subseteq {\overline{SVNMR}}_{{}_{P}}^{{\beta}_{1}}\left(A\right)$.
4. Medical Diagnosis Based on SVNPRMs over Two Universes
4.1. Medical Diagnosis Model
 (P)
 If ${x}_{i}\in PO{S}_{SVNMR}\left(A,\alpha ,\beta \right)$, $i=1,2,\dots ,m$, then ${x}_{i}$ is the determined diagnostic conclusion;
 (N)
 If ${x}_{i}\in NE{G}_{SVNMR}\left(A,\alpha ,\beta \right)$, $i=1,2,\dots ,m$, then ${x}_{i}$ is the excluded diagnostic conclusion;
 (B)
 If ${x}_{i}\in BN{D}_{SVNMR}\left(A,\alpha ,\beta \right)$, $i=1,2,\dots ,m$, then medical experts are unable to confirm whether ${x}_{i}$ is the determined or excluded diagnostic conclusion, they need more additional medical examinations to confirm the final diagnostic conclusion
4.2. Algorithm for Medical Diagnosis Model
Algorithm 1 Medical diagnosis based on SVNPRMs over two universes. 

4.3. An Illustrative Example
 (P)
 The patient is suffering from viral fever, medical experts need to pay close attention to the diagnosis;
 (N)
 The same patient shows no signs of having throat disease, which does not need close attention at the current stage;
 (B)
 Medical experts are unable to confirm whether the considered patient is suffering from tuberculosis and typhoid or not due to insufficient diagnostic information, they might organize an expert consultation to confirm the determined diagnostic conclusion at a later stage.
4.4. Comparative Analysis
4.4.1. Comparison with Other Approaches in Literature [26]
4.4.2. Comparison with Other Approaches in Literature [28]
 (P)
 The customer is suggested to purchase the third car;
 (N)
 The same customer is not suggested to by the first car at present;
 (B)
 The same customer is not sure whether the second car and the forth car are the ideal selections, he or she might collect some additional information to make a final conclusion at a later stage.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
 Since $A\subseteq B$, according to Definition 14, we have${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\right)=\left\{\frac{{\sum}_{y\in V}A\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}\ge \alpha \leftx\in U,y\in V\right.\right\}\subseteq $$\left\{\frac{{\sum}_{y\in V}B\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}\ge \alpha \leftx\in U,y\in V\right.\right\}={\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(B\right)$.Thus we obtain $A\subseteq B\Rightarrow {\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\right)\subseteq {\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(B\right)$. Similarly, we could also obtain ${\overline{SVNMR}}_{{}_{P}}^{\beta}\left(A\right)\subseteq {\overline{SVNMR}}_{{}_{P}}^{\beta}\left(B\right)$.
 ${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(\varnothing \right)=\left\{\frac{{\sum}_{y\in V}\varnothing R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}\ge \alpha \leftx\in U,y\in V\right.\right\}=\varnothing $,${\overline{SVNMR}}_{{}_{P}}^{\beta}\left(V\right)=\left\{\frac{{\sum}_{y\in V}VR\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}>\beta \leftx\in U,y\in V\right.\right\}=U$.Hence ${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(\varnothing \right)=\varnothing $ and ${\overline{SVNMR}}_{{}_{P}}^{\beta}\left(V\right)=U$ could be obtained.
 Since $0\le \beta \le \alpha \le 1$, it is not difficult to obtain${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\right)=\left\{\frac{{\sum}_{y\in V}A\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}\ge \alpha \leftx\in U,y\in V\right.\right\}\subseteq $$\left\{\frac{{\sum}_{y\in V}B\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}>\beta \leftx\in U,y\in V\right.\right\}={\overline{SVNMR}}_{{}_{P}}^{\beta}\left(B\right)$.Therefore, ${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\right)\subseteq {\overline{SVNMR}}_{{}_{P}}^{\beta}\left(A\right)$ could be obtained.
 If ${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\cap B\right)$ holds, we have $P\left(\left(A\cap B\right)\leftR\left(x,y\right)\right.\right)\ge \alpha $, then it is not difficult to obtain$\alpha \le \frac{{\sum}_{y\in V}\left(A\cap B\right)\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}\le \frac{{\sum}_{y\in V}A\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}$ and $\alpha \le \frac{{\sum}_{y\in V}\left(A\cap B\right)\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}\le \frac{{\sum}_{y\in V}B\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}$.Hence we obtain ${\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\cap B\right)\subseteq {\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(A\right)\cap {\underline{SVNMR}}_{{}_{P}}^{\alpha}\left(B\right)$. In an identical fashion, ${\overline{SVNMR}}_{{}_{P}}^{\beta}\left(A\cup B\right)\supseteq {\overline{SVNMR}}_{{}_{P}}^{\beta}\left(A\right)\cup {\overline{SVNMR}}_{{}_{P}}^{\beta}\left(B\right)$ could also be obtained.
 Since ${\alpha}_{1}\le {\alpha}_{2}$, we have${\underline{SVNMR}}_{{}_{P}}^{{\alpha}_{2}}\left(A\right)=\left\{\frac{{\sum}_{y\in V}A\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}\ge {\alpha}_{2}\leftx\in U,y\in V\right.\right\}\subseteq $$\left\{\frac{{\sum}_{y\in V}A\left(y\right)R\left(x,y\right)}{{\sum}_{y\in V}R\left(x,y\right)}\ge {\alpha}_{1}\leftx\in U,y\in V\right.\right\}={\underline{SVNMR}}_{{}_{P}}^{{\alpha}_{1}}\left(A\right)$.Hence we have ${\alpha}_{1}\le {\alpha}_{2}\Rightarrow {\underline{SVNMR}}_{{}_{P}}^{{\alpha}_{2}}\left(A\right)\subseteq {\underline{SVNMR}}_{{}_{P}}^{{\alpha}_{1}}\left(A\right)$, and ${\beta}_{1}\le {\beta}_{2}\Rightarrow {\overline{SVNMR}}_{{}_{P}}^{{\beta}_{2}}\left(A\right)\subseteq {\overline{SVNMR}}_{{}_{P}}^{{\beta}_{1}}\left(A\right)$ could be proved in a similar way.
References
 Mak, D.K. A fuzzy probabilistic method for medical diagnosis. J. Med. Syst. 2015, 39, 26. [Google Scholar] [CrossRef] [PubMed]
 Le, H.S.; Thong, N.T. Intuitionistic fuzzy recommender systems: An effective tool for medical diagnosis. Knowl. Based Syst. 2015, 74, 133–150. [Google Scholar]
 Choi, H.; Han, K.; Choi, K.; Ahn, N. A fuzzy medical diagnosis based on quantiles of diagnostic measures. J. Intell. Fuzzy Syst. 2016, 31, 3197–3202. [Google Scholar] [CrossRef]
 Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
 Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J.; Xu, Z.; Bedregal, B.; Montero, J.; Hagras, H.; Herrera, F.; De Baets, B. A historical account of types of fuzzy sets and their relationships. IEEE. Trans. Fuzzy Syst. 2016, 24, 179–194. [Google Scholar] [CrossRef]
 Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Set. Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
 Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
 Smarandache, F. Neutrosophic logicgeneralization of the intuitionistic fuzzy logic. In Extractive Metallurgy of Nickel Cobalt and Platinum Group Metals; Elsevier: New York, NY, USA, 2012; Volume 369, pp. 49–53. [Google Scholar]
 Rogatko, A.; Smarandache, F.; Sunderraman, R. A neutrosophic description logic. New Math. Natl. Comput. 2012, 4, 273–290. [Google Scholar]
 Kavitha, B.; Karthikeyan, S.; Maybell, S. An ensemble design of intrusion detection system for handling uncertainty using neutrosophic logic classifier. Knowl. Based Syst. 2012, 28, 88–96. [Google Scholar] [CrossRef]
 Wang, H.B.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005; pp. 1–87. [Google Scholar]
 Broumi, S.; Smarandache, F.; Talea, M.; Bakali, A. An introduction to bipolar single valued neutrosophic graph theory. Appl. Mech. Mater. 2016, 841, 184–191. [Google Scholar] [CrossRef]
 Broumi, S.; Smarandache, F.; Talea, M.; Bakali, A. Single valued neutrosophic graphs: Degree, order and size. In Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 24–29 July 2016. [Google Scholar]
 Zhang, C.; Zhai, Y.H.; Li, D.Y.; Mu, Y. Steam turbine fault diagnosis based on singlevalued neutrosophic multigranulation rough sets over two universes. J. Intell. Fuzzy Syst. 2016, 31, 2829–2837. [Google Scholar] [CrossRef]
 Chen, J.Q.; Ye, J. Some Singlevalued neutrosophic dombi weighted aggregation operators for multiple attribute decisionmaking. Symmetry 2017, 9, 82. [Google Scholar] [CrossRef]
 Thanh, N.D.; Ali, M.; Le, H.S. A novel clustering algorithm in a neutrosophic recommender system for medical diagnosis. Cogn. Comput. 2017, 9, 526–544. [Google Scholar] [CrossRef]
 Ali, M.; Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 2017, 28, 1817–1834. [Google Scholar] [CrossRef]
 Li, X.; Zhang, X.H. Singlevalued neutrosophic hesitant fuzzy choquet aggregation operators for multiattribute decision making. Symmetry 2018, 10, 50. [Google Scholar] [CrossRef]
 AbdelBasset, M.; Mohamed, M.; Smarandache, F. An extension of neutrosophic AHPSWOT analysis for strategic planning and decisionmaking. Symmetry 2018, 10, 116. [Google Scholar] [CrossRef]
 Wang, Y.; Liu, P. Linguistic neutrosophic generalized partitioned bonferroni mean operators and their application to multiattribute group decision making. Symmetry 2018, 10, 160. [Google Scholar] [CrossRef]
 Zhang, X.; Bo, C.; Smarandache, F.; Park, C. New operations of totally dependentneutrosophic sets and totally dependentneutrosophic soft sets. Symmetry 2018, 10, 187. [Google Scholar] [CrossRef]
 Ye, S.; Ye, J. Dice similarity measure between single valued neutrosophic multisets and its application in medical diagnosis. Neutrosophic Sets Syst. 2014, 6, 48–53. [Google Scholar]
 Yager, R.R. On the theory of bags. Int. J. Gen. Syst. 1986, 13, 23–37. [Google Scholar] [CrossRef]
 Smarandache, F. nValued Refined Neutrosophic Logic and Its Applications in Physics. Prog. Phys. 2013, 4, 143–146. [Google Scholar]
 Chatterjee, R.; Majumdar, P.; Samanta, S.K. Single valued neutrosophic multisets. Ann. Fuzzy Math. Inform. 2015, 10, 499–514. [Google Scholar]
 Ye, S.; Fu, J.; Ye, J. Medical diagnosis using distancebased similarity measures of single valued neutrosophic multisets. Neutrosophic Sets Syst. 2015, 7, 47–52. [Google Scholar]
 Broumi, S.; Deli, I.; Smarandache, F. Relations on neutrosophic multi sets with properties. arXiv, 2015; arXiv:1506.04025. [Google Scholar]
 Fan, C.X.; Fan, E.; Ye, J. The cosine measure of singlevalued neutrosophic multisets for multiple attribute decisionmaking. Symmetry 2018, 10, 154. [Google Scholar] [CrossRef]
 Zhang, C.; Li, D.Y.; Yan, Y. A dual hesitant fuzzy multigranulation rough set over twouniverse model for medical diagnoses. Comput. Math. Method Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
 Guo, Z.L.; Liu, Y.L.; Yang, H.L. A novel rough set model in generalized single valued neutrosophic approximation spaces and its application. Symmetry 2017, 9, 119. [Google Scholar] [CrossRef]
 Lu, J.; Li, D.Y.; Zhai, Y.H.; Bai, H.J. Granular structure of type2 fuzzy rough sets over two universes. Symmetry 2017, 9, 284. [Google Scholar] [CrossRef]
 Sun, B.Z.; Ma, W.M.; Zhao, H.Y. A fuzzy rough set approach to emergency material demand prediction over two universes. Appl. Math. Model. 2013, 37, 7062–7070. [Google Scholar] [CrossRef]
 Sun, B.Z.; Ma, W.M. Multigranulation rough set theory over two universes. J. Intell. Fuzzy Syst. 2015, 28, 1251–1269. [Google Scholar]
 Zhang, C.; Li, D.Y.; Ren, R. Pythagorean fuzzy multigranulation rough set over two universes and its applications in merger and acquisition. Int. J. Intell. Syst. 2016, 31, 921–943. [Google Scholar] [CrossRef]
 Sun, B.Z.; Ma, W.M.; Qian, Y.H. Multigranulation fuzzy rough set over two universes and its application to decision making. Knowl. Based Syst. 2017, 123, 61–74. [Google Scholar] [CrossRef]
 Zhang, C.; Li, D.Y.; Mu, Y.M.; Song, D. An intervalvalued hesitant fuzzy multigranulation rough set over two universes model for steam turbine fault diagnosis. Appl. Math. Model. 2017, 42, 693–704. [Google Scholar] [CrossRef]
 Zhang, C.; Li, D.Y.; Sangaiah, A.; Broumi, S. Merger and acquisition target selection based on interval neutrosophic multigranulation rough sets over two universes. Symmetry 2017, 9, 126. [Google Scholar] [CrossRef]
 Zhang, C.; Li, D.Y.; Zhai, Y.H.; Yang, Y. Multigranulation rough set model in hesitant fuzzy information systems and its application in personjob fit. Int. J. Mach. Learn. Cyber. 2017. [Google Scholar] [CrossRef]
 Zhang, F.W.; Chen, J.H.; Zhu, Y.H.; Li, J.; Li, Q.; Zhuang, Z. A dual hesitant fuzzy rough pattern recognition approach based on deviation theories and its application in urban traffic modes recognition. Symmetry 2017, 9, 262. [Google Scholar] [CrossRef]
 Zeljko, S.; Pamucar, D.; Zavadskas, E.K.; Ćirović, G.; Prentkovskis, O. The selection of wagons for the internal transport of a logistics company: A novel approach based on rough BWM and rough SAW methods. Symmetry 2017, 9, 264. [Google Scholar] [CrossRef]
 Akram, M.; Ali, G.; Alshehri, N.O. A new multiattribute decisionmaking method based on mpolar fuzzy soft rough sets. Symmetry 2017, 9, 271. [Google Scholar] [CrossRef]
 Zhang, C.; Li, D.Y.; Liang, J.Y. Hesitant fuzzy linguistic rough set over two universes model and its applications. Int. J. Mach. Learn. Cyber. 2018, 9, 577–588. [Google Scholar] [CrossRef]
 Wong, S.K.M.; Ziarko, W. Comparison of the probabilistic approximate classification and the fuzzy set model. Fuzzy Sets Syst. 1987, 21, 357–362. [Google Scholar] [CrossRef]
 Yao, Y.Y.; Wong, S.K.M. A decision theoretic framework for approximating concepts. Int. J. Man Mach. Stud. 1992, 37, 793–809. [Google Scholar] [CrossRef]
 Ziarko, W. Variable precision rough sets model. J. Comput. Syst. Sci. 1993, 46, 39–59. [Google Scholar] [CrossRef]
 Slezak, D.; Ziarko, W. The investigation of the bayesian rough set model. Int. J. Approx. Reason. 2005, 40, 81–91. [Google Scholar] [CrossRef]
 Greco, S.; Pawlak, Z.; Slowinski, R. Can bayesian confirmation measures be useful for rough set decision rules? Eng. Appl. Artif. Intel. 2004, 17, 345–361. [Google Scholar] [CrossRef]
 Yao, Y.Y.; Zhou, B. Two Bayesian approaches to rough sets. Eur. J. Oper. Res. 2016, 251, 904–917. [Google Scholar] [CrossRef]
 Yao, Y.Y. Threeway decisions with probabilistic rough sets. Inform. Sci. 2010, 180, 314–353. [Google Scholar] [CrossRef]
 Yao, Y.Y. Threeway decisions and cognitive computing. Cogn. Comput. 2016, 8, 543–554. [Google Scholar] [CrossRef]
 Yang, H.L.; Liao, X.W.; Wang, S.Y.; Wang, J. Fuzzy probabilistic rough set model on two universes and its applications. Int. J. Approx. Reason. 2013, 54, 1410–1420. [Google Scholar] [CrossRef]
 Sun, B.Z.; Ma, W.M.; Chen, X.T. Fuzzy rough set on probabilistic approximation space over two universes and its application to emergency decisionmaking. Expert Syst. 2015, 32, 507–521. [Google Scholar] [CrossRef]
 Sun, B.Z.; Ma, W.M.; Zhao, H.Y. An approach to emergency decision making based on decisiontheoretic rough set over two universes. Soft Comput. 2016, 20, 3617–3628. [Google Scholar] [CrossRef]
 Sun, B.Z.; Ma, W.M.; Xiao, X. Threeway group decision making based on multigranulation fuzzy decisiontheoretic rough set over two universes. Int. J. Approx. Reason. 2017, 81, 87–102. [Google Scholar] [CrossRef]
R  ${\mathit{y}}_{1}$  ${\mathit{y}}_{2}$  ${\mathit{y}}_{3}$  ${\mathit{y}}_{4}$  ${\mathit{y}}_{5}$ 

${x}_{1}$  $\u2329\left(0.8\right),\left(0.1\right),\left(0.1\right)\u232a$  $\u2329\left(0.2\right),\left(0.7\right),\left(0.1\right)\u232a$  $\u2329\left(0.3\right),\left(0.5\right),\left(0.2\right)\u232a$  $\u2329\left(0.5\right),\left(0.3\right),\left(0.2\right)\u232a$  $\u2329\left(0.5\right),\left(0.4\right),\left(0.1\right)\u232a$ 
${x}_{2}$  $\u2329\left(0.2\right),\left(0.7\right),\left(0.1\right)\u232a$  $\u2329\left(0.9\right),\left(0.0\right),\left(0.1\right)\u232a$  $\u2329\left(0.7\right),\left(0.2\right),\left(0.1\right)\u232a$  $\u2329\left(0.6\right),\left(0.3\right),\left(0.1\right)\u232a$  $\u2329\left(0.7\right),\left(0.2\right),\left(0.1\right)\u232a$ 
${x}_{3}$  $\u2329\left(0.5\right),\left(0.3\right),\left(0.2\right)\u232a$  $\u2329\left(0.3\right),\left(0.5\right),\left(0.2\right)\u232a$  $\u2329\left(0.2\right),\left(0.7\right),\left(0.1\right)\u232a$  $\u2329\left(0.2\right),\left(0.6\right),\left(0.2\right)\u232a$  $\u2329\left(0.4\right),\left(0.4\right),\left(0.2\right)\u232a$ 
${x}_{4}$  $\u2329\left(0.1\right),\left(0.7\right),\left(0.2\right)\u232a$  $\u2329\left(0.3\right),\left(0.6\right),\left(0.1\right)\u232a$  $\u2329\left(0.8\right),\left(0.1\right),\left(0.1\right)\u232a$  $\u2329\left(0.1\right),\left(0.8\right),\left(0.1\right)\u232a$  $\u2329\left(0.1\right),\left(0.8\right),\left(0.1\right)\u232a$ 
R  ${\mathit{y}}_{1}$  ${\mathit{y}}_{2}$  ${\mathit{y}}_{3}$  ${\mathit{y}}_{4}$ 

${x}_{1}$  $\u2329\left(0.7,0.5\right),\left(0.7,0.3\right),\left(0.6,0.2\right)\u232a$  $\u2329\left(0.5\right),\left(0.4\right),\left(0.4\right)\u232a$  $\u2329\left(0.8,0.7\right),\left(0.7,0.7\right),\left(0.6,0.5\right)\u232a$  $\u2329\left(0.5,0.1\right),\left(0.5,0.2\right),\left(0.8,0.7\right)\u232a$ 
${x}_{2}$  $\u2329\left(0.9,0.7\right),\left(0.7,0.7\right),\left(0.5,0.1\right)\u232a$  $\u2329\left(0.8\right),\left(0.7\right),\left(0.6\right)\u232a$  $\u2329\left(0.9,0.9\right),\left(0.6,0.6\right),\left(0.4,0.4\right)\u232a$  $\u2329\left(0.5,0.5\right),\left(0.2,0.1\right),\left(0.9,0.7\right)\u232a$ 
${x}_{3}$  $\u2329\left(0.6,0.3\right),\left(0.4,0.3\right),\left(0.7,0.2\right)\u232a$  $\u2329\left(0.2\right),\left(0.2\right),\left(0.2\right)\u232a$  $\u2329\left(0.9,0.6\right),\left(0.5,0.5\right),\left(0.5,0.2\right)\u232a$  $\u2329\left(0.7,0.4\right),\left(0.5,0.2\right),\left(0.3,0.2\right)\u232a$ 
${x}_{4}$  $\u2329\left(0.9,0.8\right),\left(0.7,0.6\right),\left(0.2,0.1\right)\u232a$  $\u2329\left(0.5\right),\left(0.3\right),\left(0.2\right)\u232a$  $\u2329\left(0.5,0.1\right),\left(0.7,0.4\right),\left(0.5,0.2\right)\u232a$  $\u2329\left(0.8,0.8\right),\left(0.4,0.4\right),\left(0.2,0.2\right)\u232a$ 
Different Methods  Ranking Results of Alternatives  The Best Alternative 

Method 1 based on similarity measures in [26]  ${x}_{1}\succ {x}_{3}\succ {x}_{2}\succ {x}_{4}$  ${x}_{1}$ 
The proposed method  ${x}_{1}\succ {x}_{2}\succ {x}_{3}\succ {x}_{4}$  ${x}_{1}$ 
Different Methods  Ranking Results of Alternatives  The Best Alternative 

Method 2 based on cosine measures in [28]  ${x}_{3}\succ {x}_{4}\succ {x}_{1}\succ {x}_{2}$  ${x}_{3}$ 
The proposed method  ${x}_{3}\succ {x}_{2}\succ {x}_{4}\succ {x}_{1}$  ${x}_{3}$ 
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Li, D.; Broumi, S.; Sangaiah, A.K. Medical Diagnosis Based on SingleValued Neutrosophic Probabilistic Rough Multisets over Two Universes. Symmetry 2018, 10, 213. https://doi.org/10.3390/sym10060213
Zhang C, Li D, Broumi S, Sangaiah AK. Medical Diagnosis Based on SingleValued Neutrosophic Probabilistic Rough Multisets over Two Universes. Symmetry. 2018; 10(6):213. https://doi.org/10.3390/sym10060213
Chicago/Turabian StyleZhang, Chao, Deyu Li, Said Broumi, and Arun Kumar Sangaiah. 2018. "Medical Diagnosis Based on SingleValued Neutrosophic Probabilistic Rough Multisets over Two Universes" Symmetry 10, no. 6: 213. https://doi.org/10.3390/sym10060213