A New Sampling Plan Using Neutrosophic Process Loss Consideration
Abstract
:1. Introduction
2. Neutrosophic Process Loss Consideration
- Step1:
- Select a random sample of size from the lot of the product and compute ; , .
- Step2:
- Accept the lot of the product if ; , where is the neutrosophic acceptance number.
3. Application of the Proposed Plan
4. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- Yen, C.-H.; Chang, C.-H. Designing variables sampling plans with process loss consideration. Commun. Stat.-Simul. Comput. 2009, 38, 1579–1591. [Google Scholar] [CrossRef]
- Aslam, M.; Yen, C.-H.; Jun, C.-H. Variable repetitive group sampling plans with process loss consideration. J. Stat. Comput. Simul. 2011, 81, 1417–1432. [Google Scholar] [CrossRef]
- Pearn, W.-L.; Wu, C.-W. Variables sampling plans with PPM fraction of defectives and process loss consideration. J. Oper. Res. Soc. 2006, 57, 450–459. [Google Scholar] [CrossRef]
- Aslam, M.; Yen, C.-H.; Chang, C.-H.; Jun, C.-H. Multiple states repetitive group sampling plans with process loss consideration. Appl. Math. Model. 2013, 37, 9063–9075. [Google Scholar] [CrossRef]
- Aslam, M.; Yen, C.-H.; Chang, C.-H.; Jun, C.-H. Multiple dependent state variable sampling plans with process loss consideration. Int. J. Adv. Manuf. Technol. 2014, 71, 1337–1343. [Google Scholar] [CrossRef]
- Seifi, S.; Nezhad, M.S.F. Variable sampling plan for resubmitted lots based on process capability index and Bayesian approach. Int. J. Adv. Manuf. Technol. 2017, 88, 2547–2555. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Yuan, X.; Wang, L.; Huang, D. Acceptance sampling plan of quality inspection for ocean dataset. J. Spat. Sci. 2015, 60, 329–339. [Google Scholar] [CrossRef]
- Yan, A.; Liu, S. Designing a repetitive group sampling plan for Weibull distributed processes. Math. Probl. Eng. 2016, 2016, 5862071. [Google Scholar] [CrossRef]
- Yan, A.; Liu, S.; Azam, M. Designing a multiple state repetitive group sampling plan based on the coefficient of variation. Commun. Stat.-Simul. Comput. 2017, 46, 7154–7165. [Google Scholar] [CrossRef]
- Afshari, R.; Gildeh, B.S. Construction of fuzzy multiple deferred state sampling plan. In Proceedings of the Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), Otsu, Japan, 27–30 June 2017. [Google Scholar]
- Kanagawa, A.; Ohta, H. A design for single sampling attribute plan based on fuzzy sets theory. Fuzzy Sets Syst. 1990, 37, 173–181. [Google Scholar] [CrossRef]
- Tamaki, F.; Kanagawa, A.; Ohta, H. A Fuzzy Design of Sampling Inspection Plans by Attributes. J. Jpn. Soc. Fuzzy Theory Syst. 1991, 3, 211–212. [Google Scholar] [CrossRef]
- Sadeghpour Gildeh, B.; Baloui Jamkhaneh, E.; Yari, G. Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 2011, 8, 47–55. [Google Scholar]
- Divya, P. Quality interval acceptance single sampling plan with fuzzy parameter using poisson distribution. Int. J. Adv. Res. Technol. 2012, 1, 115–125. [Google Scholar]
- Turanoğlu, E.; Kaya, İ.; Kahraman, C. Fuzzy acceptance sampling and characteristic curves. Int. J. Comput. Intell. Syst. 2012, 5, 13–29. [Google Scholar] [CrossRef]
- Jamkhaneh, E.B.; Gildeh, B.S. Acceptance Double Sampling Plan using Fuzzy Poisson Distribution 1. World Appl. Sci. J. 2012, 15, 1692–1702. [Google Scholar]
- Jamkhaneh, E.B.; Gildeh, B.S. Sequential sampling plan using fuzzy SPRT. J. Intell. Fuzzy Syst. 2013, 25, 785–791. [Google Scholar]
- Venkateh, A.; Elango, S. Acceptance sampling for the influence of TRH using crisp and fuzzy gamma distribution. Aryabhatta J. Math. Inform. 2014, 6, 119–124. [Google Scholar]
- Elango, S.; Venkatesh, A.; Sivakumar, G. A fuzzy mathematical analysis for the effect of trh using acceptance sampling plans. Int. J. Pure Appl. Math. 2017, 117, 1–7. [Google Scholar]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis; American Research Press: Rehoboth, DE, USA, 1998; p. 105. [Google Scholar]
- Ye, J.; Chen, J.; Yong, R.; Du, S. Expression and analysis of joint roughness coefficient using neutrosophic number functions. Information 2017, 8, 69. [Google Scholar] [CrossRef]
- Chen, J.; Ye, J.; Du, S. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 2017, 9, 208. [Google Scholar] [CrossRef]
- Johnson, T. The relationship of Cpm to squared error loss. J. Q. Technol. 1992, 24, 211–215. [Google Scholar] [CrossRef]
p1 | p2 | ||||
---|---|---|---|---|---|
0.001 | 0.002 | [39, 78] | [0.0014, 0.0016] | [0.9503, 0.9994] | [0.0794, 0.0987] |
0.003 | [22, 33] | [0.0019, 0.0021] | [0.9934, 0.9998] | [0.0962, 0.0997] | |
0.004 | [16, 24] | [0.0023, 0.0026] | [0.9978, 1.000] | [0.0951, 0.0951] | |
0.006 | [13, 15] | [0.0031, 0.0034] | [0.9999, 1.0000] | [0.0838, 0.0978] | |
0.008 | [9, 11] | [0.0037, 0.004] | [0.9999, 1.0000] | [0.0954, 0.0966] | |
0.010 | [7, 9] | [0.0040, 0.0042] | [0.9998, 1.0000] | [0.0747, 0.0971] | |
0.015 | [5, 7] | [0.0048, 0.006] | [0.9998, 1.000] | [0.0971, 0.0988] | |
0.020 | [4, 6] | [0.0053, 0.0073] | [0.9997, 1.000] | [0.0986, 0.0994] | |
0.0025 | 0.030 | [5, 8] | [0.0096, 0.130] | [0.9982, 1.000] | [0.0982, 0.0988] |
0.050 | [3, 6] | [0.0097, 0.018] | [0.9913, 1.000] | [0.0956, 0.0995] | |
0.005 | 0.050 | [7, 10] | [0.0200, 0.024] | [0.9998, 1.0000] | [0.0971, 0.0959] |
0.100 | [4, 6] | [0.0260, 0.036] | [0.9997, 1.0000] | [0.0956, 0.0963] | |
0.01 | 0.020 | [49, 53] | [0.0150, 0.0152] | [0.9867, 0.9913] | [0.0985, 0.0994] |
0.030 | [15, 18] | [0.0169, 0.0181] | [0.9546, 0.9812] | [0.0955, 0.0998] | |
0.03 | 0.060 | [78, 85] | [0.0480, 0.0485] | [0.9994, 0.9997] | [0.0987, 0.0999] |
0.090 | [56, 60] | [0.0690, 0.0696] | [1.0000, 1.0000] | [0.0989, 0.09999] | |
0.05 | 0.100 | [53, 56] | [0.0760, 0.0765] | [0.9913, 0.9935] | [0.0981, 0.0994] |
0.150 | [26, 29] | [0.0990, 0.102] | [0.9979, 0.9992] | [0.0958, 0.0986] |
Column 1 | Column 2 | Column 3 | Column 4 |
---|---|---|---|
[1.9422, 1.9422] | [1.9651,1.9651] | [2.0230, 2.0230] | [1.9712, 1.9712] |
[1.9738, 1.9938] | [1.9541, 1.9541] | [1.9800, 2.0980] | [1.9596, 1.9596] |
[2.0001, 2.0001] | [1.9659, 1.9659] | [1.9955, 1.9955] | [1.9842, 1.9842] |
[1.9897, 1.9897] | [1.9836, 1.9836] | [1.9891, 1.9891] | [1.9608, 1.9608] |
[2.0106, 3.000] | [1.9885, 1.9885] | [1.9704, 1.9704] | [1.9882, 1.9882] |
[1.9640, 1.9640] | [2.0187, 2.0187] | [1.9616, 1.9716] | [1.9865, 1.9865] |
[1.9841, 1.9841] | [1.9919, 1.9919] | [1.9737, 1.9737] | [1.9958, 1.9958] |
[1.9841, 1.9841] | [1.9570, 1.9570] | [1.9610, 1.9610] | [2.0015, 2.0015] |
[1.9668, 1.9668] | [1.9696, 2.0212] | [2.0334, 2.0334] | [1.9656, 1.9656] |
[2.0114, 2.0521] | [1.9861, 1.9861] | [1.9743, 1.9743] | [1.9594, 1.9841] |
[1.9837, 1.9837] | [1.9424, 1.9424] | [1.9744, 1.9944] | [1.9605, 1.9605] |
[1.9779, 1.9999] | [2.0072, 2.0072] | [1.9875, 1.9875] | [1.9781, 1.9781] |
[1.9971, 1.9971] | [1.9963, 1.9963] | [1.9375, 1.9375] | [1.9941, 1.9941] |
[1.9611, 1.9611] | [1.9729, 1.9729] | [1.9992, 1.9992] | [1.9925, 1.9925] |
[1.9964, 1.9964] | [1.9614, 2.0000] | [1.9768, 1.9768] | [1.9991, 1.9991] |
[1.9748, 1.9748] | [1.9664, 1.9664] | [2.0035, 2.0035] | [1.9822, 1.9822] |
[2.0030, 4.0512] | [1.9786, 1.9786] | [1.9720, 1.9720] | [1.9834, 1.9834] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, M. A New Sampling Plan Using Neutrosophic Process Loss Consideration. Symmetry 2018, 10, 132. https://doi.org/10.3390/sym10050132
Aslam M. A New Sampling Plan Using Neutrosophic Process Loss Consideration. Symmetry. 2018; 10(5):132. https://doi.org/10.3390/sym10050132
Chicago/Turabian StyleAslam, Muhammad. 2018. "A New Sampling Plan Using Neutrosophic Process Loss Consideration" Symmetry 10, no. 5: 132. https://doi.org/10.3390/sym10050132