Synthesis of 3,4-Biaryl-2,5-Dichlorothiophene through Suzuki Cross-Coupling and Theoretical Exploration of Their Potential Applications as Nonlinear Optical Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Computational Methods
2.3. Results and Discussion
2.3.1. NLO Properties
2.3.2. Frontier Molecular Orbital (FMO) Analysis
3. Experimental
3.1. General
3.2. General Method for the Synthesis of 3,4-Biaryl-2,5-Dichlorothiophene (2a–2i)
3.3. Characterization Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davydov, B.; Derkacheva, L.; Dunina, V.; Zhabotinskii, M.; Zolin, V.; Koreneva, L.; Samokhina, M. Connection between charge transfer and laser second harmonic generation. JETP Lett. 1970, 12, 24–26. [Google Scholar]
- Perry, J.; Mansour, K.; Lee, I.-Y.; Wu, X.-L.; Bedworth, P.; Chen, C.-T.; Ng, D.; Marder, S.; Miles, P.; Wada, T. Organic optical limiter with a strong nonlinear absorptive response. Science 1996, 273, 1533–1536. [Google Scholar] [CrossRef]
- Fakis, M.; Tsigaridas, G.; Polyzos, I.; Giannetas, V.; Persephonis, P.; Spiliopoulos, I.; Mikroyannidis, J. Intensity dependent nonlinear absorption of pyrylium chromophores. Chem. Phys. Lett. 2001, 342, 155–161. [Google Scholar] [CrossRef]
- Munn, R.W.; Ironside, C. Principles and Applications of Nonlinear Optical Materials; Springer: Berlin, Germany, 1993. [Google Scholar]
- Kuzyk, M.G.; Dirk, C.W. Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials; Marcel Dekker: New York, NY, USA, 1998. [Google Scholar]
- McCahon, S.W.; Tutt, L.W.; Klein, M.B.; Valley, G.C. Optical Limiting with Reverse Saturable Absorbers; Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors; International Society for Optics and Photonics: Orlando, FL, USA, 1990; pp. 304–314. [Google Scholar]
- Puterová, Z.; Krutošíková, A.; Végh, D. Gewald reaction: Synthesis, properties and applications of substituted 2-aminothiophenes. Arkivoc 2010, 1, 209–246. [Google Scholar]
- Cui, Y.; Zhang, X.; Jenekhe, S.A. Thiophene-linked polyphenylquinoxaline: A new electron transport conjugated polymer for electroluminescent devices. Macromolecules 1999, 32, 3824–3826. [Google Scholar] [CrossRef]
- Steybe, F.; Effenberger, F.; Beckmann, S.; Krämer, P.; Glania, C.; Wortmann, R. Enhanced nonlinear optical properties and thermal stability of donor-acceptor substituted oligothiophenes. Chem. Phys. 1997, 219, 317–331. [Google Scholar] [CrossRef]
- Glenis, S.; Tourillon, G.; Garnier, F. Photoelectrochemical properties of thin films of polythiophene and derivatives: Doping level and structure effects. Thin Solid Films 1984, 122, 9–17. [Google Scholar] [CrossRef]
- Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.T.; Rasool, N.; Dang, T.T.; Reinke, H.; Langer, P. Synthesis of tetraarylthiophenes by regioselective Suzuki cross-coupling reactions of tetrabromothiophene. Tetrahedron Lett. 2007, 48, 845–847. [Google Scholar] [CrossRef]
- Ikram, H.M.; Rasool, N.; Zubair, M.; Khan, K.M.; Abbas Chotana, G.; Akhtar, M.N.; Abu, N.; Alitheen, N.B.; Elgorban, A.M.; Rana, U.A. Efficient Double Suzuki Cross-Coupling Reactions of 2,5-Dibromo-3-hexylthiophene: Anti-Tumor, Haemolytic, Anti-Thrombolytic and Biofilm Inhibition Studies. Molecules 2016, 21, 977. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J. Organomet. Chem. 1999, 576, 147–168. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Revision D. 01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. PCCP 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Mennucci, B.; Tomasi, J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106, 5151–5158. [Google Scholar] [CrossRef]
- Mennucci, B.; Cancès, E.; Tomasi, J. Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications. J. Phys. Chem. B 1997, 101, 10506–10517. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef] [PubMed]
- Mennucci, B. Polarizable Continuum Model. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 386–404. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.; Kelley, C. Gnuplot 5.0: An Interactive Plotting Program. Official Gnuplot Documentation. 2015. Available online: http://www.gnuplot.info/ (accessed on 30 July 2018).
- Legault, C.Y. CYLview B; Université de Sherbrooke: Sherbrooke, QC, Canada, 2009; Available online: http://www.cylview.org (accessed on 30 July 2018).
- Hashmi, M.A.; Andreassend, S.K.; Keyzers, R.A.; Lein, M. Accurate prediction of the optical rotation and NMR properties for highly flexible chiral natural products. Phys. Chem. Chem. Phys. 2016, 18, 24506–24510. [Google Scholar] [CrossRef] [PubMed]
- Marder, S.R. Organic nonlinear optical materials: Where we have been and where we are going. Chem. Commun. 2006, 2, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Champagne, B.; Plaquet, A.; Pozzo, J.-L.; Rodriguez, V.; Castet, F. Nonlinear Optical Molecular Switches as Selective Cation Sensors. J. Am. Chem. Soc. 2012, 134, 8101–8103. [Google Scholar] [CrossRef] [PubMed]
- Burland, D. Optical Nonlinearities in Chemistry: Introduction. Chem. Rev. 1994, 94, 1–2. [Google Scholar] [CrossRef]
- Hashmi, M.A.; Lein, M. Carbon Nano-onions as Photosensitizers: Stacking-Induced Red-Shift. J. Phys. Chem. C 2018, 122, 2422–2431. [Google Scholar] [CrossRef]
- Arshad, M.N.; Bibi, A.; Mahmood, T.; Asiri, A.M.; Ayub, K. Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study. Molecules 2015, 20, 5851–5874. [Google Scholar] [CrossRef] [PubMed]
- Ikram, H.M.; Rasool, N.; Ahmad, G.; Chotana, G.A.; Musharraf, S.G.; Zubair, M.; Rana, U.A.; Zia-Ul-Haq, M.; Jaafar, H.Z. Selective C-arylation of 2,5-dibromo-3-hexylthiophene via suzuki cross coupling reaction and their pharmacological aspects. Molecules 2015, 20, 5202–5214. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Rasool, N.; Ikram, H.M.; Gul Khan, S.; Mahmood, T.; Ayub, K.; Zubair, M.; Al-Zahrani, E.; Ali Rana, U.; Akhtar, M.N. Efficient Synthesis of Novel Pyridine-Based Derivatives via Suzuki Cross-Coupling Reaction of Commercially Available 5-Bromo-2-methylpyridin-3-amine: Quantum Mechanical Investigations and Biological Activities. Molecules 2017, 22, 190. [Google Scholar] [CrossRef] [PubMed]
Entry | Arylboronic Acids | Product | Yield |
---|---|---|---|
1 | 3,5-dimethylphenylboronic acid | 2a | 53 |
2 | 4-methoxyphenylboronic acid | 2b | 65 |
3 | 3,5-difluorophenylboronic acid | 2c | 63 |
4 | 3-chloro-4-fluorophenylboronic acid | 2d | 71 |
5 | 4-iodophenylboronic acid | 2e | 69 |
6 | 3-acetylphenylboronic acid | 2f | 65 |
7 | 4-(methylthio)phenylboronic acid | 2g | 74 |
8 | 4-chlorophenylboronic acid | 2h | 70 |
9 | p-tolylboronic acid | 2i | 57 |
Compounds | First Hyperpolarizability | HOMO-LUMO Gap |
---|---|---|
2a | 81.08 | 121.14 |
2b | 1361.75 | 118.75 |
2c | 60.73 | 120.63 |
2d | 411.94 | 121.02 |
2e | 693.55 | 117.68 |
2f | 280.27 | 113.25 |
2g | 2807.08 | 110.12 |
2h | 686.95 | 119.33 |
2i | 214.36 | 120.68 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, N.; Rasool, N.; Ikram, H.M.; Hashmi, M.A.; Mahmood, T.; Zubair, M.; Ahmad, G.; Rizwan, K.; Rashid, T.; Rashid, U. Synthesis of 3,4-Biaryl-2,5-Dichlorothiophene through Suzuki Cross-Coupling and Theoretical Exploration of Their Potential Applications as Nonlinear Optical Materials. Symmetry 2018, 10, 766. https://doi.org/10.3390/sym10120766
Mahmood N, Rasool N, Ikram HM, Hashmi MA, Mahmood T, Zubair M, Ahmad G, Rizwan K, Rashid T, Rashid U. Synthesis of 3,4-Biaryl-2,5-Dichlorothiophene through Suzuki Cross-Coupling and Theoretical Exploration of Their Potential Applications as Nonlinear Optical Materials. Symmetry. 2018; 10(12):766. https://doi.org/10.3390/sym10120766
Chicago/Turabian StyleMahmood, Nasir, Nasir Rasool, Hafiz Mansoor Ikram, Muhammad Ali Hashmi, Tariq Mahmood, Muhammad Zubair, Gulraiz Ahmad, Komal Rizwan, Tahir Rashid, and Umer Rashid. 2018. "Synthesis of 3,4-Biaryl-2,5-Dichlorothiophene through Suzuki Cross-Coupling and Theoretical Exploration of Their Potential Applications as Nonlinear Optical Materials" Symmetry 10, no. 12: 766. https://doi.org/10.3390/sym10120766
APA StyleMahmood, N., Rasool, N., Ikram, H. M., Hashmi, M. A., Mahmood, T., Zubair, M., Ahmad, G., Rizwan, K., Rashid, T., & Rashid, U. (2018). Synthesis of 3,4-Biaryl-2,5-Dichlorothiophene through Suzuki Cross-Coupling and Theoretical Exploration of Their Potential Applications as Nonlinear Optical Materials. Symmetry, 10(12), 766. https://doi.org/10.3390/sym10120766