# On the Role of Unitary-Symmetry for the Foundation of Probability and Time in a Realist Approach to Quantum Physics

## Abstract

**:**

## 1. Introduction

## 2. Probabilities

#### 2.1. Quantum Physics

#### 2.2. Permutation Symmetry

#### 2.3. The Born-Rule

#### 2.4. Frequencies

## 3. The Notion of “Time”

#### 3.1. Identity and Change

#### 3.2. Dynamics

#### 3.3. Quanta of Time

#### 3.4. Thermal Flow

## 4. Space-Time

#### 4.1. Speed of Light

#### 4.2. Covariance

## 5. Consequences

## Funding

## Conflicts of Interest

## References

- Lewis, P.J. Phenomena and Theory. In Quantum Ontology, 1st ed.; Oxford University Press: New York, NY, USA, 2016; pp. 22–24. ISBN 978-0190469818. [Google Scholar]
- Weinberg, S. Symmetry: A “Key to Nature’s Secrets”. The New York Review of Books, October 2011. [Google Scholar]
- Childers, T. Philosophy & Probability, 1st ed.; Oxford University Press: New York, NY, USA, 2013; ISBN 978-0199661831. [Google Scholar]
- Gleason, A.M. Measures on the closed subspaces of a Hilbert space. J. Math. Mech.
**1957**, 6, 885–893. [Google Scholar] [CrossRef] - Bohr, A.; Ulfbeck, O. Genuine Fortuitousness: Where Did That Click Come From? Found. Phys.
**2001**, 31, 757–774. [Google Scholar] [CrossRef] - Caves, M.C.; Fuchs, C.A.; Schack, R. Subjective probability and quantum certainty. Stud. Hist. Philos. Sci. Part B
**2007**, 38, 255–274. [Google Scholar] [CrossRef] [Green Version] - Saunders, S.; Barrett, J.; Kent, A.; Wallace, D. (Eds.) Many Worlds? 1st ed.; Oxford University Press: Oxford, UK, 2010; ISBN 978-0-19-956056-1. [Google Scholar]
- Albert, D.; Loewer, B. Interpreting the many-worlds interpretation. Synthese
**1988**, 77, 195–213. [Google Scholar] [CrossRef] - Hardy, L. Quantum Theory from Five Reasonable Axioms. arXiv, 2001; arXiv:quant-ph/0101012. [Google Scholar]
- Schack, R. Quantum Theory from Four of Hardy’s Axioms. Found. Phys.
**2003**, 10, 1461–1468. [Google Scholar] [CrossRef] - Schlatter, A. Quantum Probabilities and Maximum Entropy. Entropy
**2017**, 19, 304. [Google Scholar] [CrossRef] - Born, M. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik
**1926**, 37, 863–867. [Google Scholar] [CrossRef] - Zurek, W.H. Environment-assisted invariance, entanglement and probabilities in quantum physics. Phys. Rev. Lett.
**2003**, 90, 120404. [Google Scholar] [CrossRef] - Caves, C.M.; Fuchs, C.A.; Schack, R. Quantum probabilities as Bayesian probabilities. Phys. Rev. A
**2002**, 65, 022305. [Google Scholar] [CrossRef] - Margolus, N.; Levitin, L.B. The maximum speed of dynamical evolution. Physica D
**1998**, 120, 188–195. [Google Scholar] [CrossRef] [Green Version] - Lubkin, E. Keeping the Entropy of Measurement: Szilard revisited. Int. J. Theor. Phys.
**1987**, 26, 523–534. [Google Scholar] [CrossRef] - Connes, A.; Rovelli, C. Von Neumann Algebra Automorphisms and Time-Thermodynamics Relation in Generally Covariant Quantum Theories. Class. Quant. Grav.
**1994**, 11, 2899–2917. [Google Scholar] [CrossRef] - Martinetti, P.; Rovelli, C. Diamond’s Temperature: Unruh effect for bounded trajectories and thermal time hypothesis. Class. Quant. Grav.
**2003**, 20, 4919–4932. [Google Scholar] [CrossRef] - Schlatter, A. On the Principle of Synchronization. Entropy
**2018**, 20, 741. [Google Scholar] [CrossRef] - Kastner, R.E. On Quantum Collapse as a Basis for the Second Law of Thermodynamics. Entropy
**2017**, 19, 106. [Google Scholar] [CrossRef] - Gibbons, G.; Hawking, S. Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev. D
**1977**, 15, 2738–2751. [Google Scholar] [CrossRef] - Gisin, A. Impossibility of covariant, deterministic non local hidden-variable extensions of quantum theory. Phys. Rev. A
**2011**, 83, 020102. [Google Scholar] [CrossRef] - Dürr, D.; Lazarovici, D. Nichtlokalität durch Retrokausalität. In Verständliche Quantenmechanik, 1st ed.; Springer Spektrum, Springer-Verlag GmbH: Heidelberg, Germany, 2018; pp. 215–217. ISBN 978-3-662-55888-1. [Google Scholar]
- Bell, J.S. La Nouvelle cuisine. In Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2004; pp. 232–248. ISBN 9780521523387. [Google Scholar]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 km. Nature
**2015**, 526, 682–686. [Google Scholar] [CrossRef] - Leifer, M.S.; Pusey, M.F. Is a time symmetric interpretation of quantum theory possible without retrocausality? Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
**2017**, 473, 20160607. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Price, H. Toy models for retrocausality. Stud. Hist. Philos. Mod. Phys.
**2008**, 39, 752–761. [Google Scholar] [CrossRef] [Green Version] - Adlam, E. Spooky Action at a Temporal Distance. Entropy
**2018**, 20, 41. [Google Scholar] [CrossRef] - Maudlin, T. Three measurement problems. Topoi
**1995**, 14, 7–15. [Google Scholar] [CrossRef] - Elitzur, A.C.; Dolev, S.; Zeilinger, A. Time reversed epr and the choice of histories in quantum mechanics. In Proceedings of XXII Solvay Conference in Physics. Special Issue, Quantum Computers and Computing; World Scientific: London, UK, 2002; pp. 452–461. [Google Scholar]
- Aharonov, Y.; Bergmann, P.G.; Lebowitz, J.L. Time Symmetry in the Quantum Process of Measurement. Phys. Rev. B
**1964**, 134, 1410. [Google Scholar] [CrossRef] - Kastner, R.E. The Possibilist Transactional Interpretation and Relativity. Found. Phys.
**2012**, 42, 1094–1113. [Google Scholar] [CrossRef] - Elitzur, A.C.; Dolev, S. Becoming as a Bridge between Quantum Mechanics and Relativity. In Endophysics, Time, Quantum and the Subjective; Saniga, M., Buccheri, R., Elitzur, A.C., Eds.; World Scientific Publishing Co.: Singapore, 2005; pp. 197–201. [Google Scholar]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Schlatter, A.
On the Role of Unitary-Symmetry for the Foundation of Probability and Time in a Realist Approach to Quantum Physics. *Symmetry* **2018**, *10*, 737.
https://doi.org/10.3390/sym10120737

**AMA Style**

Schlatter A.
On the Role of Unitary-Symmetry for the Foundation of Probability and Time in a Realist Approach to Quantum Physics. *Symmetry*. 2018; 10(12):737.
https://doi.org/10.3390/sym10120737

**Chicago/Turabian Style**

Schlatter, Andreas.
2018. "On the Role of Unitary-Symmetry for the Foundation of Probability and Time in a Realist Approach to Quantum Physics" *Symmetry* 10, no. 12: 737.
https://doi.org/10.3390/sym10120737