On Some Statistical Approximation by (p,q)-Bleimann, Butzer and Hahn Operators
Abstract
:1. Introduction
2. Construction of Operators and Moment Estimation
3. Korovkin Type Statistical Approximation Properties
4. Rates of Statistical Convergence
- ,
5. Construction of the Bivariate Operators
- 1.
- ,
- 2.
- ,
- 3.
- ,
- 4.
- .
6. Rates of Convergence of the Bivariate Operators
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aral, A.; Doğru, O. Bleimann Butzer and Hahn operators based on q-integers. J. Inequal. Appl. 2007, 2007, 79410. [Google Scholar] [CrossRef]
- Bleimann, G.; Butzer, P.L.; Hahn, L. A Bernstein-type operator approximating continuous functions on the semi-axis. Indag. Math. 1980, 42, 255–262. [Google Scholar] [CrossRef]
- Gadjiev, A.D.; Çakar, Ö. On uniform approximation by Bleimann, Butzer and Hahn operators on all positive semi-axis. Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 1999, 19, 21–26. [Google Scholar]
- Mursaleen, M.; Ansari, K.J.; Khan, A. On (p,q)-analogue of Bernstein operators. Appl. Math. Comput. 2015, 266, 874–882, Erratum in 2015, 266, 874–882. [Google Scholar] [CrossRef]
- Marin, M. An evolutionary equation in thermoelasticity of dipolar bodies. J. Math. Phys. 1999, 40, 1391–1399. [Google Scholar] [CrossRef]
- Marin, M.; Stan, G. Weak solutions in Elasticity of dipolar bodies with stretch. Carpath. J. Math. 2013, 29, 33–40. [Google Scholar]
- Khalid Khan, D.K. Lobiyal, Bézier curves based on Lupaş (p,q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017, 317, 458–477. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gupta, V. Rate of convergence for the Bézier variant of the Bleimann–Butzer–Hahn operators. Appl. Math. Lett. 2005, 18, 849–857. [Google Scholar] [CrossRef]
- Ansari, K.J.; Karaisa, A. On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators. Int. J. Nonlinear Anal. Appl. 2017, 8, 181–200. [Google Scholar]
- Dattoli, G.; Lorenzutta, S.; Cesarano, C. Bernstein polynomials and operational methods. J. Comp. Anal. Appl. 2016, 8, 369–377. [Google Scholar]
- Kadak, U.; Mishra, V.N.; Pandey, S. Chlodowsky type generalization of (p,q)-Szász operators involving Brenke type polynomials. Rev. Real Acad. Cienc. Exact. Fís. Nat. Ser. A Mat. 2018, 112, 1443–1462. [Google Scholar] [CrossRef]
- Khan, A.; Sharma, V. Statistical approximation by (p,q)-analogue of Bernstein-Stancu operators. Ajerbaijan J. Math. 2018, 8, 100–121. [Google Scholar]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Some approximation results by (p,q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015, 264, 392–402, Corrigendum in 2015, 269, 744–746. [Google Scholar]
- Mursaleen, M.; Alotaibi, A.; Ansari, K.J. On a Kantorovich variant of (p,q)-Szász-Mirakjan operators. J. Funct. Spaces 2016, 2016, 1035253. [Google Scholar] [CrossRef]
- Acar, T. (p,q)-Generalization of Szász-Mirakyan operators. Math. Meth. Appl. Sci. 2016, 39, 2685–2695. [Google Scholar] [CrossRef]
- Hounkonnou, M.N.; Désiré, J.; Kyemba, B. (p,q)-calculus: Dierentiation and integration. SUT J. Math. 2013, 49, 145–167. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Result. Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Sahai, V.; Yadav, S. Representations of two parameter quantum algebras and p,q-special functions. J. Math. Anal. Appl. 2007, 335, 268–279. [Google Scholar] [CrossRef]
- Victor, K.; Pokman, C. Quantum Calculus; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Mursaleen, M.; Nasiruzzaman, M.; Khan, A.; Ansari, K.J. Some approximation results on Bleimann–Butzer–Hahn operators defined by (p,q)-integers. Filomat 2016, 30, 639–648. [Google Scholar] [CrossRef]
- Mursaleen, M. Nasiruzzaman, Some approximation properties of bivariate Bleimann–Butzer–Hahn operators based on (p,q)-integers. Boll. Unione Mat. Ital. 2017, 10, 271–289. [Google Scholar] [CrossRef]
- Fast, H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244. [Google Scholar] [CrossRef]
- Niven, I.; Zuckerman, H.S.; Montgomery, H. An Introduction to the Theory of Numbers, 5th ed.; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Mursaleen, M.; Nasiruzzaman, M.; Ansari, K.J.; Alotaibi, A. Generalized (p,q)-Bleimann–Butzer–Hahn operators and some approximation results. J. Ineq. Appl. 2017, 2017, 310. [Google Scholar] [CrossRef] [PubMed]
- Ansari, K.J. Approximation Properties of Some Operators and Thier q-Analogues. Ph.D. Thesis, Aligarh Muslim University, Aligarh, India, 2015. [Google Scholar]
- Ersan, S. Approximation properties of bivariate generalization of Bleimann, Butzer and Hahn operators based on the q-integers. In Proceedings of the 12th WSEAS International Conference on Applied Mathematics, Cairo, Egypt, 29–31 December 2007; pp. 122–127. [Google Scholar]
- Lenze, B. Bernstein-Baskakov-Kantorovich operators and Lipschitz-type maximal functions. Approx. Theory 1990, 58, 469–496. [Google Scholar]
- Anastassiou, G.A.; Gal, S.G. Approximation Theory: Moduli of Continuity and Global Smoothness Preservation; Birkhauser: Boston, MA, USA, 2000. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, K.J.; Ahmad, I.; Mursaleen, M.; Hussain, I. On Some Statistical Approximation by (p,q)-Bleimann, Butzer and Hahn Operators. Symmetry 2018, 10, 731. https://doi.org/10.3390/sym10120731
Ansari KJ, Ahmad I, Mursaleen M, Hussain I. On Some Statistical Approximation by (p,q)-Bleimann, Butzer and Hahn Operators. Symmetry. 2018; 10(12):731. https://doi.org/10.3390/sym10120731
Chicago/Turabian StyleAnsari, Khursheed J., Ishfaq Ahmad, M. Mursaleen, and Iqtadar Hussain. 2018. "On Some Statistical Approximation by (p,q)-Bleimann, Butzer and Hahn Operators" Symmetry 10, no. 12: 731. https://doi.org/10.3390/sym10120731