Symmetric Identities of Hermite-Bernoulli Polynomials and Hermite-Bernoulli Numbers Attached to a Dirichlet Character χ
Abstract
:1. Introduction and Preliminaries
2. Symmetry Identities of Hermite-Bernoulli Polynomials of Arbitrary Complex Number Order
3. Symmetry Identities of Arbitrary Order Hermite-Bernoulli Polynomials Attached to a Dirichlet Character
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, T. q-Volkenborn integration. Russ. J. Math. Phys. 2002, 9, 288–299. [Google Scholar]
- Cenkci, M. The p-adic generalized twisted h, q-Euler-l-function and its applications. Adv. Stud. Contem. Math. 2007, 15, 37–47. [Google Scholar]
- Cenkci, M.; Simsek, Y.; Kurt, V. Multiple two-variable p-adic q-L-function and its behavior at s = 0. Russ. J. Math. Phys. 2008, 15, 447–459. [Google Scholar] [CrossRef]
- Kim, T. On a q-analogue of the p-adic log gamma functions and related integrals. J. Numb. Theor. 1999, 76, 320–329. [Google Scholar] [CrossRef]
- Kim, T. A note on q-Volkenborn integration. Proc. Jangeon Math. Soc. 2005, 8, 13–17. [Google Scholar]
- Kim, T. q-Euler numbers and polynomials associated with p-adic q-integrals. J. Nonlinear Math. Phys. 2007, 14, 15–27. [Google Scholar] [CrossRef]
- Kim, T. A note on p-adic q-integral on ℤp associated with q-Euler numbers. Adv. Stud. Contem. Math. 2007, 15, 133–137. [Google Scholar]
- Kim, T. On p-adic q-l-functions and sums of powers. J. Math. Anal. Appl. 2007, 329, 1472–1481. [Google Scholar] [CrossRef]
- Kim, T.; Choi, J.Y.; Sug, J.Y. Extended q-Euler numbers and polynomials associated with fermionic p-adic q-integral on ℤp. Russ. J. Math. Phy. 2007, 14, 160–163. [Google Scholar] [CrossRef]
- Simsek, Y. On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers. Russ. J. Math. Phy. 2006, 13, 340–348. [Google Scholar] [CrossRef]
- Haroon, H.; Khan, W.A. Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials. Commun. Korean Math. Soc. 2017, in press. [Google Scholar]
- Khan, N.; Usman, T.; Choi, J. A new generalization of Apostol-type Laguerre-Genocchi polynomials. C. R. Acad. Sci. Paris Ser. I 2017, 355, 607–617. [Google Scholar] [CrossRef]
- Pathan, M.A.; Khan, W.A. Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials. Mediterr. J. Math. 2015, 12, 679–695. [Google Scholar] [CrossRef]
- Pathan, M.A.; Khan, W.A. A new class of generalized polynomials associated with Hermite and Euler polynomials. Mediterr. J. Math. 2016, 13, 913–928. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Kim, T.; Rim, S.H.; Lee, B. Some identities of symmetry for the generalized Bernoulli numbers and polynomials. Abs. Appl. Anal. 2009, 2009, 848943. [Google Scholar] [CrossRef]
- Khan, W.A. Degenerate Hermite-Bernoulli numbers and polynomials of the second kind. Prespacetime J. 2016, 7, 1297–1305. [Google Scholar]
- Cesarano, C. Operational Methods and New Identities for Hermite Polynomials. Math. Model. Nat. Phenom. 2017, 12, 44–50. [Google Scholar] [CrossRef]
- Dattoli, G.; Lorenzutta, S.; Cesarano, C. Finite sums and generalized forms of Bernoulli polynomials. Rend. Mat. 1999, 19, 385–391. [Google Scholar]
- Bell, E.T. Exponential polynomials. Ann. Math. 1934, 35, 258–277. [Google Scholar] [CrossRef]
- Andrews, L.C. Special Functions for Engineers and Applied Mathematicians; Macmillan Publishing Company: New York, NY, USA, 1985. [Google Scholar]
- Jang, L.C.; Kim, S.D.; Park, D.W.; Ro, Y.S. A note on Euler number and polynomials. J. Inequ. Appl. 2006, 2006, 34602. [Google Scholar] [CrossRef]
- Kim, T. On the q-extension of Euler and Genocchi numbers. J. Math. Anal. Appl. 2007, 326, 1458–1465. [Google Scholar] [CrossRef]
- Kim, T. q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 2008, 15, 51–57. [Google Scholar] [CrossRef]
- Kim, T. On the multiple q-Genocchi and Euler numbers. Russ. J. Math. Phy. 2008, 15, 481–486. [Google Scholar] [CrossRef]
- Kim, T. New approach to q-Euler, Genocchi numbers and their interpolation functions. Adv. Stud. Contem. Math. 2009, 18, 105–112. [Google Scholar]
- Kim, T. Sums of products of q-Euler numbers. J. Comput. Anal. Appl. 2010, 12, 185–190. [Google Scholar]
- Kim, Y.H.; Kim, W.; Jang, L.C. On the q-extension of Apostol-Euler numbers and polynomials. Abs. Appl. Anal. 2008, 2008, 296159. [Google Scholar]
- Simsek, Y. Complete sum of products of (h,q)-extension of the Euler polynomials and numbers. J. Differ. Eqn. Appl. 2010, 16, 1331–1348. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. An identity of symmetry for the degenerate Frobenius-Euler polynomials. Math. Slovaca 2018, 68, 239–243. [Google Scholar] [CrossRef]
- Kim, T. Symmetry p-adic invariant integral on ℤp for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 2008, 14, 1267–1277. [Google Scholar] [CrossRef]
- Choi, J. Notes on formal manipulations of double series. Commun. Korean Math. Soc. 2003, 18, 781–789. [Google Scholar] [CrossRef]
- Kim, T.; Jang, L.C.; Kim, Y.H.; Hwang, K.W. On the identities of symmetry for the generalized Bernoulli polynomials attached to χ of higher order. J. Inequ. Appl. 2009, 2009, 640152. [Google Scholar] [CrossRef]
- Kim, T.; Hwang, K.W.; Kim, Y.H. Symmetry properties of higher order Bernoulli polynomials. Adv. Differ. Equ. 2009, 2009, 318639. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araci, S.; Khan, W.A.; Nisar, K.S. Symmetric Identities of Hermite-Bernoulli Polynomials and Hermite-Bernoulli Numbers Attached to a Dirichlet Character χ. Symmetry 2018, 10, 675. https://doi.org/10.3390/sym10120675
Araci S, Khan WA, Nisar KS. Symmetric Identities of Hermite-Bernoulli Polynomials and Hermite-Bernoulli Numbers Attached to a Dirichlet Character χ. Symmetry. 2018; 10(12):675. https://doi.org/10.3390/sym10120675
Chicago/Turabian StyleAraci, Serkan, Waseem Ahmad Khan, and Kottakkaran Sooppy Nisar. 2018. "Symmetric Identities of Hermite-Bernoulli Polynomials and Hermite-Bernoulli Numbers Attached to a Dirichlet Character χ" Symmetry 10, no. 12: 675. https://doi.org/10.3390/sym10120675