Assessment of Conditions for Implementing Information Technology in a Warehouse System: A Novel Fuzzy PIPRECIA Method
Abstract
:1. Introduction
2. Literature Review
2.1. The Application of Fuzzy MCDM Method in Storage Systems
2.2. The Application of Fuzzy MCDM Methods in the Field of Information Technology
2.3. The Application of Integrated SWOT-MCDM Models
3. Methods
3.1. SWOT Analysis
3.2. Operations on Fuzzy Numbers
3.3. A Novel Fuzzy PIvot Pairwise RElative Criteria Importance Assessment-Fuzzy PIPRECIA Method
4. Assessment of Conditions for the Implementation of Barcode Technology in the Warehouse System Using an Integrated SWOT-Fuzzy PIPRECIA Model
4.1. Description of the Reception and Dispatch Process from the “WU Warehouse”
4.1.1. Processes in the Reception Warehouse
4.1.2. Processes in the Warehouse of Technical Material
4.2. SWOT Analysis of a Warehouse System
4.2.1. Strengths
4.2.2. Weaknesses
4.2.3. Opportunities
4.2.4. Threats
4.3. Assessment of Conditions for Implementing Barcode Technology by Applying a Fuzzy PIPRECIA Method
4.3.1. Assessment of the Main Dimensions of SWOT Matrix
4.3.2. Assessment of the Elements of Strength Dimension
4.3.3. Assessment of Weakness Dimension Elements
4.3.4. Assessment of Opportunity Dimension Elements
4.3.5. Assessment of Threat Dimension Elements
5. Sensitivity Analysis and Discussion of Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Novičević, M.M.; Harvey, M.; Autry, C.W.; Bond III, E.U. Dual-perspective SWOT: A synthesis of marketing intelligence and planning. Mark. Intell. Plan. 2004, 22, 84–94. [Google Scholar] [CrossRef]
- Ananda, J.; Herath, G. A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecol. Econ. 2009, 68, 2535–2548. [Google Scholar] [CrossRef]
- Saaty, T.L. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Cost, and Risk; RWS Publications: Pittsburgh, PA, USA, 2005. [Google Scholar]
- Yalcin, M.; Gul, F.K. A GIS-based multi criteria decision analysis approach for exploring geothermal resources: Akarcay basin (Afyonkarahisar). Geothermics 2017, 67, 18–28. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: New York, NY, USA, 2015. [Google Scholar]
- MacCrimmon, K.R. Improving the System Design and Evaluation Process by the Use of Trade-off Information (Memorandum RM-5877-DOT); The Rand Corporation: Santa Monica, CA, USA, 1969. [Google Scholar]
- Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Pitz, G.F.; McKillip, J. Decision Analysis for Program Evaluators; SAGE Publications: Beverly Hills, CA, USA, 1984. [Google Scholar]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Zhou, P.; Ang, B.W.; Poh, K.L. Decision analysis in energy and environmental modeling: An update. Energy 2006, 31, 2604–2622. [Google Scholar] [CrossRef]
- Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustain. Energy Rev. 2007, 11, 1584–1595. [Google Scholar]
- Yap, H.Y.; Nixon, J.D. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Manag. 2015, 46, 265–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aravossis, K.; Anagnostopoulos, P.; Koungolos, A.; Vliamos, S. A New Methodology Approach for the Technical–Economical Evaluation of Alternative Waste Disposal Methods by Use of Multi Criteria Analysis. In Proceedings of the Seventh International Conference on Environmental Science and Technology, September 2001; pp. 40–51. Available online: http://arvis.simor.ntua.gr/Attachments/Publications/Conferences/mekrites/7.6.7_A%20NEW%20METHODOLOGY%20APPROACH%20FOR%20THE%20TECHNICAL%20ECONOMICAL%20EVALUATION.pdf (accessed on 1 November 2018).
- Hsu, P.; Wu, C.; Li, Y. Selection of infectious medical waste disposal firms by using the analytic hierarchy process and sensitivity analysis. Waste Manag. 2008, 28, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- De Feo, G.; De Gisi, S. Using an innovative criteria weighting tool for stakeholders’ involvement to rank MSW facility sites with the AHP. Waste Manag. 2010, 30, 2370–2382. [Google Scholar] [CrossRef] [PubMed]
- Soltani, A.; Hewage, K.; Reza, B.; Sadiq, R. Multiple stakeholders in multicriteria decision-making in the context of municipal solid waste management: A review. Waste Manag. 20115, 35, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Badi, I.; Ballem, M. Supplier selection using the rough BWM-MAIRCA model: A case study in pharmaceutical supplying in Libya. Decis. Mak. Appl. Manag. Eng. 2018, 1, 16–33. [Google Scholar] [CrossRef]
- Božanic, D.; Tešic, D.; Milicevic, J. A hybrid fuzzy AHP-MABAC model: Application in the Serbian Army—The selection of the location for deep wading as a technique of crossing the river by tanks. Decis. Mak. Appl. Manag. Eng. 2018, 1, 143–164. [Google Scholar] [CrossRef]
- Nixon, J.D.; Dey, P.K.; Ghosh, S.K.; Davies, P.A. Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy 2013, 59, 215–223. [Google Scholar] [CrossRef]
- Haddad, B.; Liazid, A.; Ferreira, P. A multi-criteria approach to rank renewables for the Algerian electricity system. Renew. Energy 2017, 107, 462–472. [Google Scholar] [CrossRef]
- Arsić, S.; Nikolić, D.; Mihajlović, I.; Fedajev, A.; Živković, Ž. A New Approach Within ANP-SWOT Framework for Prioritization of Ecosystem Management and Case Study of National Park Djerdap, Serbia. Ecol. Econ. 2018, 146, 85–95. [Google Scholar] [CrossRef]
- Grošelj, P.; Hodges, D.; Stirn, L.Z. The environmental management problem of Pohorje, Slovenia: A new group approach within ANP-SWOT framework. J. Environ. Manag. 2015, 161, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Gigović, L.J.; Pamučar, D.; Božnić, D.; Ljubojević, S. Application of the GIS-DANPMABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia. Renew. Energy 2017, 103, 501–521. [Google Scholar] [CrossRef]
- Sevkli, M.; Oztekin, A.; Uysal, O.; Torlak, G.; Turkyilmaz, A.; Delen, D. Development of a fuzzy ANP based SWOT analysis for the airline industry in Turkey. Expert Syst. Appl. 2012, 39, 14–24. [Google Scholar] [CrossRef]
- Gim, B.; Kim, J.W. Multi-criteria evaluation of hydrogen storage systems for automobiles in Korea using the fuzzy analytic hierarchy process. Int. J. Hydrogen Energy 2014, 39, 7852–7858. [Google Scholar] [CrossRef]
- Karmaker, C.; Saha, M. Optimization of warehouse location through fuzzy multi-criteria decision making methods. Decis. Sci. Lett. 2015, 4, 315–334. [Google Scholar] [CrossRef]
- Ashrafzadeh, M.; Rafiei, F.M.; Isfahani, N.M.; Zare, Z. Application of fuzzy TOPSIS method for the selection of warehouse location: A case study. Interdiscip. J. Cont. Res. Bus. 2012, 3, 655–671. [Google Scholar]
- Sezer, F.; Özkan, B.A.L.İ.; Gürol, P. Hazardous materials warehouse selection as a multiple criteria decision making problem. J. Econ. Bibliog. 2016, 3, 63–73. [Google Scholar]
- Chatterjee, K.; Kar, S. Pattern Recognition and Machine Intelligence: An Induced Fuzzy Rasch-VIKOR Model for Warehouse Location Evaluation under Risky Supply Chain; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Dey, B.; Bairagi, B.; Sarkar, B.; Sanyal, S.K. A hybrid fuzzy technique for the selection of warehouse location in a supply chain under a utopian environment. Int. J. Manag. Sci. Eng. Manag. 2013, 8, 250–261. [Google Scholar] [CrossRef]
- Emeç, Ş.; Akkaya, G. Stochastic AHP and fuzzy VIKOR approach for warehouse location selection problem. J. Enterp. Inf. Manag. 2018, 31, 950–962. [Google Scholar] [CrossRef]
- Eko Saputro, T.; Daneshvar Rouyendegh, B. A hybrid approach for selecting material handling equipment in a warehouse. Int. J. Manag. Sci. Eng. Manag. 2016, 11, 34–48. [Google Scholar] [CrossRef]
- Erkan, T.E.; Can, G.F. Selecting the best warehouse data collecting system by using AHP and FAHP methods. Tech. Gaz. 2014, 21, 87–93. [Google Scholar]
- Burinskienė, A. The efficiency evaluation when RFID is used in warehouses. J. Manag. 2015, 26, 7–15. [Google Scholar]
- Bu, F. A Data mining framework for massive RFID data based on apriori algorithm. J. Phys. Conf. Ser. 2018, 1087, 022020. [Google Scholar] [CrossRef]
- Cebeci, U. Fuzzy AHP-based decision support system for selecting ERP systems in textile industry by using balanced scorecard. Expert Syst. Appl. 2009, 36, 8900–8909. [Google Scholar] [CrossRef]
- Yuksel, I.; Dagdeviren, M. Using the analytic network process (ANP) in a SWOT analysis—A case study for a textile firm. Inf. Sci. 2007, 177, 3364–3382. [Google Scholar] [CrossRef]
- Rao, R.V.; Rajesh, T.S. Software selection in manufacturing industries using a fuzzy multiple criteria decision making method, PROMETHEE. Intell. Inf. Manag. 2009, 1, 159. [Google Scholar] [CrossRef]
- Cochran, J.K.; Chen, H.N. Fuzzy multi-criteria selection of object-oriented simulation software for production system analysis. Comput. Oper. Res. 2005, 32, 153–168. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Kahraman, C.; Ruan, D. A fuzzy multi-criteria decision approach for software development strategy selection. Int. J. Gen. Syst. 2004, 33, 259–280. [Google Scholar] [CrossRef]
- Etaati, L.; Sadi-Nezhad, S.; Makue, A. Using fuzzy group analytical network process and ISO 9126 quality model in software selection: A case study in e-learning systems. J. Appl. Sci. 2011, 11, 96–103. [Google Scholar] [CrossRef]
- Kang, D.; Jang, W.; Park, Y. Evaluation of e-commerce websites using fuzzy hierarchical TOPSIS based on ES-QUAL. Appl. Soft Comput. 2016, 42, 53–65. [Google Scholar] [CrossRef]
- Chou, W.C.; Cheng, Y.P. A hybrid fuzzy MCDM approach for evaluating website quality of professional accounting firms. Expert Syst. Appl. 2012, 39, 2783–2793. [Google Scholar] [CrossRef]
- Sun, C.C.; Lin, G.T. Using fuzzy TOPSIS method for evaluating the competitive advantages of shopping websites. Expert Syst. Appl. 2009, 36, 11764–11771. [Google Scholar] [CrossRef]
- Buyukozkan, G.; Cifci, G. A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Syst. Appl. 2012, 39, 3000–3011. [Google Scholar] [CrossRef]
- Kahraman, C.; Yasin Ateş, N.; Çevik, S.; Gülbay, M.; Ayça Erdoğan, S. Hierarchical fuzzy TOPSIS model for selection among logistics information technologies. J. Enterp. Inf. Manag. 2007, 20, 143–168. [Google Scholar] [CrossRef]
- Babaesmailli, M.; Arbabshirani, B.; Golmah, V. Integrating analytical network process and fuzzy logic to prioritize the strategies–a case study for tile manufacturing firm. Expert Syst. Appl. 2012, 39, 925–935. [Google Scholar] [CrossRef]
- Reihanian, A.; Zalina, B.M.; Kahrom, E.; Hin, T.W. Sustainable tourism development strategy by SWOT analysis: Boujagh National Park, Iran. Tour. Manag. Perspect. 2012, 4, 223–228. [Google Scholar] [CrossRef]
- Ghorbani, A.; Raufirad, V.; Rafiani, P.; Azadi, H. Ecotourism sustainable development strategies using SWOT and QSPM model: A case study of Kaji Namakzar wetland, south Khorsan Province, Iran. Tour. Manag. Perspect. 2015, 16, 290–297. [Google Scholar] [CrossRef]
- Kheirkhah, A.; Babaeianpour, M.; Bassiri, P. Development of a hybrid method based on fuzzy PROMETHEE and ANP in the framework of SWOT analysis for strategic decisions. Int. J. Basic Appl. Sci. 2014, 8, 504–515. [Google Scholar]
- Rauch, P. SWOT analyses and SWOT strategy formulation for forest owner cooperations in Austria. Eur. J. For. Res. 2007, 126, 413–420. [Google Scholar] [CrossRef]
- Dana, B.G. SWOT analysis to improve quality management production. Procedia-Soc. Behav. Sci. 2012, 62, 319–324. [Google Scholar] [CrossRef]
- Stanujkic, D.; Zavadskas, E.K.; Karabasevic, D.; Smarandache, F.; Turskis, Z. The use of the pivot pairwise relative criteria importance assessment method for determining the weights of criteria. Rom. J. Econ. Forecast 2017, 20, 116–133. [Google Scholar]
- Stević, Ž.; Pamučar, D.; Kazimieras Zavadskas, E.; Ćirović, G.; Prentkovskis, O. The selection of wagons for the internal transport of a logistics company: A novel approach based on rough BWM and rough SAW methods. Symmetry 2017, 9, 264. [Google Scholar] [CrossRef]
- Stojčić, M.; Pamučar, D.; Mahmutagić, E.; Stević, Ž. Development of an ANFIS Model for the Optimization of a Queuing System in Warehouses. Information 2018, 9, 240. [Google Scholar] [CrossRef]
- Mulalić, E.; Stević, Ž.; Božičković, Z.; Vasiljević, M.; Sremac, S. Decomposition and centralization of warehouse systems in order to rationalize material flows. In Proceedings of the International conference transport and logistics-til 2017, Niš, Serbia, 25–26 May 2017; pp. 83–90. [Google Scholar]
- Stević, Ž.; Mulalić, E.; Đalić, I.; Vasiljević, N. SWOT analysis of logistics system in company of the paper production. In Proceedings of the International May Conference on Strategic Management–IMKSM17, Bor, Serbia, 19–21 May 2017; pp. 59–69. [Google Scholar]
- Stević, Ž.; Mulalić, E.; Božičković, Z.; Vesković, S.; Đalić, I. Economic analysis of the project of warehouse centralization in the paper production company. Serbian J. Manag. 2018, 13, 47–62. [Google Scholar] [CrossRef]
- Radović, D.; Stević, Ž. Evaluation and selection of KPI in transport using SWARA method. Transp. Logist. 2018, 44, 60–68. [Google Scholar]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria method selection. Omega 2018. [Google Scholar] [CrossRef]
- Pei, L.; Jin, F. Two hesitant multiplicative decision-making algorithms and their application to fog-haze factor assessment problem. Algorithms 2018, 11, 154. [Google Scholar] [CrossRef]
- Bashir, Z.; Rashid, T.; Wątróbski, J.; Sałabun, W.; Malik, A. Hesitant probabilistic multiplicative preference relations in group decision making. Appl. Sci. 2018, 8, 398. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, X.; Li, Y.; Bo, C. Probabilistic single-valued (interval) neutrosophic hesitant fuzzy set and its application in multi-attribute decision making. Symmetry 2018, 10, 419. [Google Scholar] [CrossRef]
- Faizi, S.; Rashid, T.; Sałabun, W.; Zafar, S.; Wątróbski, J. Decision making with uncertainty using hesitant fuzzy sets. Int. J. Fuzzy Syst. 2018, 20, 93–103. [Google Scholar] [CrossRef]
- Xu, Y.; Shang, X.; Wang, J.; Wu, W.; Huang, H. Some q-Rung dual hesitant fuzzy heronian mean operators with their application to multiple attribute group decision-making. Symmetry 2018, 10, 472. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z.; Liu, M. Hesitant trapezoidal fuzzy QUALIFLEX method and its application in the evaluation of green supply chain initiatives. Sustainability 2016, 8, 952. [Google Scholar] [CrossRef]
- Roy, B. Paradigms and Challenges. In Multiple Criteria Decision Analysis. State of the Art Surveys, 2nd ed.; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 19–39. [Google Scholar]
- Ziemba, P. NEAT F-PROMETHEE—A new fuzzy multiple criteria decision making method based on the adjustment of mapping trapezoidal fuzzy numbers. Expert Syst. Appl. 2018, 110, 363–380. [Google Scholar] [CrossRef]
Linguistic Scale | Fuzzy Number | |||||
---|---|---|---|---|---|---|
Scale 1–2 | l | m | u | DFV | ||
Almost equal value | 1 | 1.000 | 1.000 | 1.050 | 1.008 | |
Slightly more significant | 2 | 1.100 | 1.150 | 1.200 | 1.150 | |
Moderately more significant | 3 | 1.200 | 1.300 | 1.350 | 1.292 | |
More significant | 4 | 1.300 | 1.450 | 1.500 | 1.433 | |
Much more significant | 5 | 1.400 | 1.600 | 1.650 | 1.575 | |
Dominantly more significant | 6 | 1.500 | 1.750 | 1.800 | 1.717 | |
Absolutely more significant | 7 | 1.600 | 1.900 | 1.950 | 1.858 |
Fuzzy Number | Linguistic Scale | ||||
---|---|---|---|---|---|
Scale 0–1 | l | m | u | DFV | |
0.667 | 1.000 | 1.000 | 0.944 | weakly less significant | |
0.500 | 0.667 | 1.000 | 0.694 | moderately less significant | |
0.400 | 0.500 | 0.667 | 0.511 | less significant | |
0.333 | 0.400 | 0.500 | 0.406 | really less significant | |
0.286 | 0.333 | 0.400 | 0.337 | much less significant | |
0.250 | 0.286 | 0.333 | 0.288 | dominantly less significant | |
0.222 | 0.250 | 0.286 | 0.251 | absolutely less significant |
STRENGTHS | WEAKNESSES |
---|---|
Human resources in the warehouse system | Difficulties in inventory control |
A linked work system among the Weighing Scale, Reception Warehouse and the Warehouse of technical material | Difficulties in supplementing warehouse inventory |
Good organization of the work unit | The problem with the way of confirming the material issued |
Good relationship between warehouse keepers and users | The excessive period between taking materials out and their confirmation |
All items are clearly marked and sorted throughout the warehouse (suspension cards) | Keeping records of debts |
Warehouse work conditions | Wasting the warehouse keepers’ time on material confirmation |
Access to the main road | Consumption of office supplies when performing all warehouse activities |
Warehouse keepers’ errors when recording materials | |
Current IT system of work | |
OPPORTUNITIES | THREATS |
Automatic inventory control | Employer’s lack of understanding of the importance to introduce a barcode |
Faster supplementing of monthly warehouse inventory | Users’ lack of understanding of the importance to keep the warehouse using a barcode system |
Faster confirmation of goods by users | The warehouse keepers’ lack of understanding of the importance to introduce a barcode system into the warehouse |
Eliminating faults when typing a requisition form | Provision of financial resources |
Eliminating the waste time of warehouse keepers to keep records of debts | |
Modernization of WU Warehouse operation | |
Confidence between warehouse keepers and users |
PIPR. | C1 | C2 | C3 | C4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DM1 | 1.200 | 1.300 | 1.350 | 0.222 | 0.250 | 0.286 | 0.222 | 0.250 | 0.286 | |||
DM2 | 1.200 | 1.300 | 1.350 | 0.222 | 0.250 | 0.286 | 0.222 | 0.250 | 0.286 | |||
DM3 | 1.200 | 1.300 | 1.350 | 0.222 | 0.250 | 0.286 | 0.222 | 0.250 | 0.286 | |||
GM | 1.200 | 1.300 | 1.350 | 0.222 | 0.250 | 0.286 | 0.222 | 0.250 | 0.286 |
PIPR-I | C4 | C3 | C2 | C1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DM1 | 1.300 | 1.450 | 1.500 | 1.400 | 1.600 | 1.650 | 0.400 | 0.500 | 0.667 | |||
DM2 | 1.200 | 1.300 | 1.350 | 1.400 | 1.600 | 1.650 | 0.400 | 0.500 | 0.667 | |||
DM3 | 1.400 | 1.600 | 1.650 | 1.400 | 1.600 | 1.650 | 0.333 | 0.400 | 0.500 | |||
GM | 1.297 | 1.445 | 1.495 | 1.400 | 1.600 | 1.650 | 0.376 | 0.464 | 0.606 |
PIPRECIA | sj | kj | qj | wj | DF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.253 | 0.269 | 0.299 | 0.271 | |||
C2 | 1.200 | 1.300 | 1.350 | 0.650 | 0.700 | 0.800 | 1.250 | 1.429 | 1.538 | 0.316 | 0.385 | 0.459 | 0.386 |
C3 | 0.222 | 0.250 | 0.286 | 1.714 | 1.750 | 1.778 | 0.703 | 0.816 | 0.897 | 0.178 | 0.220 | 0.268 | 0.221 |
C4 | 0.222 | 0.250 | 0.286 | 1.714 | 1.750 | 1.778 | 0.396 | 0.466 | 0.524 | 0.100 | 0.126 | 0.156 | 0.126 |
SUM | 3.349 | 3.711 | 3.959 |
PIPRECIA-I | sj’ | kj’ | qj’ | wj’ | DF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.376 | 0.464 | 0.606 | 1.394 | 1.536 | 1.624 | 1.461 | 2.932 | 4.058 | 0.115 | 0.286 | 0.649 | 0.318 |
C2 | 1.400 | 1.600 | 1.650 | 0.350 | 0.400 | 0.600 | 2.372 | 4.503 | 5.658 | 0.187 | 0.440 | 0.904 | 0.475 |
C3 | 1.297 | 1.445 | 1.495 | 0.505 | 0.555 | 0.703 | 1.423 | 1.801 | 1.980 | 0.112 | 0.176 | 0.316 | 0.189 |
C4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.079 | 0.098 | 0.160 | 0.105 | |||
6.257 | 10.236 | 12.695 |
PIPR. | C1 | C2 | C3 | C4 | C5 | C6 | C7 | ||||||||||||||
DM1 | 1.100 | 1.150 | 1.200 | 1.200 | 1.300 | 1.350 | 0.286 | 0.333 | 0.400 | 0.500 | 0.667 | 1.000 | 0.500 | 0.667 | 1.000 | 0.667 | 1.000 | 1.000 | |||
DM2 | 1.000 | 1.000 | 1.050 | 1.200 | 1.300 | 1.350 | 0.333 | 0.400 | 0.500 | 0.500 | 0.667 | 1.000 | 0.500 | 0.667 | 1.000 | 0.500 | 0.667 | 1.000 | |||
DM3 | 1.100 | 1.150 | 1.200 | 1.100 | 1.150 | 1.200 | 0.400 | 0.500 | 0.667 | 0.500 | 0.667 | 1.000 | 0.500 | 0.667 | 1.000 | 0.667 | 1.000 | 1.000 | |||
GM | 1.066 | 1.098 | 1.148 | 1.166 | 1.248 | 1.298 | 0.336 | 0.405 | 0.511 | 0.500 | 0.667 | 1.000 | 0.500 | 0.667 | 1.000 | 0.606 | 0.874 | 1.000 | |||
PIPR-I | C7 | C6 | C5 | C4 | C3 | C2 | C1 | ||||||||||||||
DM1 | 1.000 | 1.000 | 1.050 | 1.100 | 1.150 | 1.200 | 1.100 | 1.150 | 1.200 | 1.400 | 1.600 | 1.650 | 0.400 | 0.500 | 0.667 | 0.500 | 0.667 | 1.000 | |||
DM2 | 1.100 | 1.150 | 1.200 | 1.100 | 1.150 | 1.200 | 1.100 | 1.150 | 1.200 | 1.300 | 1.450 | 1.500 | 0.400 | 0.500 | 0.667 | 0.667 | 1.000 | 1.000 | |||
DM3 | 1.000 | 1.000 | 1.050 | 1.100 | 1.150 | 1.200 | 1.100 | 1.150 | 1.200 | 1.200 | 1.300 | 1.350 | 0.500 | 0.667 | 1.000 | 0.500 | 0.667 | 1.000 | |||
GM | 1.032 | 1.048 | 1.098 | 1.100 | 1.150 | 1.200 | 1.100 | 1.150 | 1.200 | 1.297 | 1.445 | 1.495 | 0.431 | 0.550 | 0.763 | 0.550 | 0.763 | 1.000 |
PIPRECIA | sj | kj | qj | wj | DF | ||||||||
C1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1,000 | 0.120 | 0.162 | 0.191 | 0.160 | |||
C2 | 1.066 | 1.098 | 1.148 | 0.852 | 0.902 | 0.934 | 1.070 | 1.108 | 1,173 | 0.128 | 0.179 | 0.224 | 0.178 |
C3 | 1.166 | 1.248 | 1.298 | 0.702 | 0.752 | 0.834 | 1.283 | 1.474 | 1,672 | 0.154 | 0.238 | 0.320 | 0.238 |
C4 | 0.336 | 0.405 | 0.511 | 1.489 | 1.595 | 1.664 | 0.771 | 0.924 | 1,122 | 0.093 | 0.150 | 0.215 | 0.151 |
C5 | 0.500 | 0.667 | 1.000 | 1.000 | 1.333 | 1.500 | 0.514 | 0.693 | 1,122 | 0.062 | 0.112 | 0.215 | 0.121 |
C6 | 0.500 | 0.667 | 1.000 | 1.000 | 1.333 | 1.500 | 0.343 | 0.520 | 1,122 | 0.041 | 0.084 | 0.215 | 0.099 |
C7 | 0.606 | 0.874 | 1.000 | 1.000 | 1.126 | 1.394 | 0.246 | 0.461 | 1,122 | 0.029 | 0.075 | 0.215 | 0.090 |
SUM | 5.227 | 6.180 | 8,335 | ||||||||||
PIPRECIA-I | sj’ | kj’ | qj’ | wj’ | DF | ||||||||
c1 | 0.550 | 0.763 | 1.000 | 1.000 | 1.237 | 1.450 | 0.798 | 1.460 | 2,773 | 0.056 | 0.137 | 0.337 | 0.157 |
c2 | 0.431 | 0.550 | 0.763 | 1.237 | 1.450 | 1.569 | 1.157 | 1.806 | 2,773 | 0.081 | 0.170 | 0.337 | 0.183 |
c3 | 1.297 | 1.445 | 1.495 | 0.505 | 0.555 | 0.703 | 1.816 | 2.618 | 3,429 | 0.128 | 0.246 | 0.417 | 0.255 |
c4 | 1.100 | 1.150 | 1.200 | 0.800 | 0.850 | 0.900 | 1.276 | 1.453 | 1,732 | 0.090 | 0.137 | 0.210 | 0.141 |
C5 | 1.100 | 1.150 | 1.200 | 0.800 | 0.850 | 0.900 | 1.148 | 1.235 | 1,385 | 0.081 | 0.116 | 0.168 | 0.119 |
C6 | 1.032 | 1.048 | 1.098 | 0.902 | 0.952 | 0.968 | 1.033 | 1.050 | 1,108 | 0.073 | 0.099 | 0.135 | 0.100 |
C7 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1,000 | 0.070 | 0.094 | 0.122 | 0.095 | |||
SUM | 8.229 | 10.622 | 14,200 |
PIPR. | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | ||||||||||||||||
DM1 | 1.000 | 1.000 | 1.000 | 1.300 | 1.450 | 1.500 | 1.000 | 1.000 | 1.050 | 0.667 | 1.000 | 1.000 | 0.400 | 0.500 | 0.667 | 0.500 | 0.667 | 1.000 | 1.100 | 1.150 | 1.200 | 0.400 | 0.500 | 0.667 |
DM2 | 1.000 | 1.000 | 1.050 | 1.200 | 1.300 | 1.350 | 1.000 | 1.000 | 1.000 | 0.500 | 0.667 | 1.000 | 0.400 | 0.500 | 0.667 | 0.500 | 0.667 | 1.000 | 1.100 | 1.150 | 1.200 | 0.500 | 0.667 | 1.000 |
DM3 | 1.000 | 1.000 | 1.050 | 1.200 | 1.300 | 1.350 | 1.000 | 1.000 | 1.000 | 0.500 | 0.667 | 1.000 | 0.400 | 0.500 | 0.667 | 0.667 | 1.000 | 1.000 | 1.000 | 1.000 | 1.050 | 0.400 | 0.500 | 0.667 |
GM | 1.000 | 1.000 | 1.033 | 1.232 | 1.348 | 1.398 | 1.000 | 1.000 | 1.016 | 0.550 | 0.763 | 1.000 | 0.400 | 0.500 | 0.667 | 0.550 | 0.763 | 1.000 | 1.066 | 1.098 | 1.148 | 0.431 | 0.550 | 0.763 |
PIPR-I | C8 | C7 | C6 | C5 | C4 | C3 | C2 | C1 | ||||||||||||||||
DM1 | 1.200 | 1.300 | 1.350 | 0.500 | 0.667 | 1.000 | 1.100 | 1.150 | 1.200 | 1.200 | 1.300 | 1.350 | 1.000 | 1.000 | 1.050 | 0.667 | 1.000 | 1.000 | 0.333 | 0.400 | 0.500 | 1.000 | 1.000 | 1.000 |
DM2 | 1.100 | 1.150 | 1.200 | 0.500 | 0.667 | 1.000 | 1.100 | 1.150 | 1.200 | 1.200 | 1.300 | 1.350 | 1.100 | 1.150 | 1.200 | 1.000 | 1.000 | 1.000 | 0.400 | 0.500 | 0.667 | 0.667 | 1.000 | 1.000 |
DM3 | 1.200 | 1.300 | 1.350 | 0.667 | 1.000 | 1.000 | 1.000 | 1.000 | 1.050 | 1.200 | 1.300 | 1.350 | 1.100 | 1.150 | 1.200 | 1.000 | 1.000 | 1.000 | 0.400 | 0.500 | 0.667 | 0.667 | 1.000 | 1.000 |
GM | 1.166 | 1.248 | 1.298 | 0.550 | 0.763 | 1.000 | 1.066 | 1.098 | 1.148 | 1.200 | 1.300 | 1.350 | 1.066 | 1.098 | 1.148 | 0.874 | 1.000 | 1.000 | 0.376 | 0.464 | 0.606 | 0.763 | 1.000 | 1.000 |
PIPRECIA | sj | kj | qj | wj | DF | ||||||||
C1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.079 | 0.110 | 0.140 | 0.110 | |||
C2 | 1.000 | 1.000 | 1.033 | 0.967 | 1.000 | 1.000 | 1.000 | 1.000 | 1.034 | 0.079 | 0.110 | 0.145 | 0.111 |
C3 | 1.232 | 1.348 | 1.398 | 0.602 | 0.652 | 0.768 | 1.303 | 1.534 | 1.719 | 0.103 | 0.169 | 0.241 | 0.170 |
C4 | 1.000 | 1.000 | 1.016 | 0.984 | 1.000 | 1.000 | 1.303 | 1.534 | 1.747 | 0.103 | 0.169 | 0.245 | 0.171 |
C5 | 0.550 | 0.763 | 1.000 | 1.000 | 1.237 | 1.450 | 0.899 | 1.240 | 1.747 | 0.071 | 0.137 | 0.245 | 0.144 |
C6 | 0.400 | 0.500 | 0.667 | 1.333 | 1.500 | 1.600 | 0.562 | 0.827 | 1.310 | 0.044 | 0.091 | 0.184 | 0.099 |
C7 | 0.550 | 0.763 | 1.000 | 1.000 | 1.237 | 1.450 | 0.387 | 0.669 | 1.310 | 0.031 | 0.074 | 0.184 | 0.085 |
C8 | 1.066 | 1.098 | 1.148 | 0.852 | 0.902 | 0.934 | 0.415 | 0.741 | 1.538 | 0.033 | 0.082 | 0.216 | 0.096 |
C9 | 0.431 | 0.550 | 0.763 | 1.237 | 1.450 | 1.569 | 0.264 | 0.511 | 1.243 | 0.021 | 0.056 | 0.174 | 0.070 |
SUM | 7.132 | 9.056 | 12.649 | ||||||||||
PIPRECIA-I | sj’ | kj’ | qj’ | wj’ | DF | ||||||||
C1 | 0.763 | 1.000 | 1.000 | 1.000 | 1.000 | 1.237 | 0.523 | 1.228 | 2.164 | 0.028 | 0.098 | 0.257 | 0.113 |
C2 | 0.376 | 0.464 | 0.606 | 1.394 | 1.536 | 1.624 | 0.647 | 1.228 | 2.164 | 0.035 | 0.098 | 0.257 | 0.114 |
C3 | 0.874 | 1.000 | 1.000 | 1.000 | 1.000 | 1.126 | 1.051 | 1.886 | 3.017 | 0.057 | 0.151 | 0.358 | 0.170 |
C4 | 1.066 | 1.098 | 1.148 | 0.852 | 0.902 | 0.934 | 1.184 | 1.886 | 3.017 | 0.064 | 0.151 | 0.358 | 0.171 |
C5 | 1.200 | 1.300 | 1.350 | 0.650 | 0.700 | 0.800 | 1.106 | 1.702 | 2.572 | 0.060 | 0.136 | 0.305 | 0.151 |
C6 | 1.066 | 1.098 | 1.148 | 0.852 | 0.902 | 0.934 | 0.885 | 1.191 | 1.672 | 0.048 | 0.095 | 0.198 | 0.104 |
C7 | 0.550 | 0.763 | 1.000 | 1.000 | 1.237 | 1.450 | 0.827 | 1.075 | 1.425 | 0.045 | 0.086 | 0.169 | 0.093 |
C8 | 1.166 | 1.248 | 1.298 | 0.702 | 0.752 | 0.834 | 1.199 | 1.330 | 1.425 | 0.065 | 0.106 | 0.169 | 0.110 |
C9 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.054 | 0.080 | 0.119 | 0.082 | |||
SUM | 8.421 | 12.527 | 18.455 |
PIPR. | C1 | C2 | C3 | C4 | C5 | C6 | C7 | ||||||||||||||
DM1 | 1.100 | 1.150 | 1.200 | 1.300 | 1.450 | 1.500 | 1.000 | 1.000 | 1.000 | 0.250 | 0.286 | 0.333 | 0.500 | 0.667 | 1.000 | 1.100 | 1.150 | 1.200 | |||
DM2 | 1.000 | 1.000 | 1.050 | 1.200 | 1.300 | 1.350 | 1.000 | 1.000 | 1.000 | 0.250 | 0.286 | 0.333 | 0.500 | 0.667 | 1.000 | 1.100 | 1.150 | 1.200 | |||
DM3 | 1.000 | 1.000 | 1.050 | 1.200 | 1.300 | 1.350 | 1.000 | 1.000 | 1.000 | 0.250 | 0.286 | 0.333 | 0.667 | 1.000 | 1.000 | 1.000 | 1.000 | 1.050 | |||
GM | 1.032 | 1.048 | 1.098 | 1.232 | 1.348 | 1.398 | 1.000 | 1.000 | 1.000 | 0.250 | 0.286 | 0.333 | 0.550 | 0.763 | 1.000 | 1.066 | 1.098 | 1.148 | |||
PIPR-I | C7 | C6 | C5 | C4 | C3 | C2 | C1 | ||||||||||||||
DM1 | 0.500 | 0.667 | 1.000 | 1.100 | 1.150 | 1.200 | 1.500 | 1.750 | 1.800 | 1.000 | 1.000 | 1.000 | 0.333 | 0.400 | 0.500 | 0.500 | 0.667 | 1.000 | |||
DM2 | 0.500 | 0.667 | 1.000 | 1.100 | 1.150 | 1.200 | 1.500 | 1.750 | 1.800 | 1.000 | 1.000 | 1.000 | 0.400 | 0.500 | 0.667 | 0.667 | 1.000 | 1.000 | |||
DM3 | 0.667 | 1.000 | 1.000 | 1.000 | 1.000 | 1.050 | 1.500 | 1.750 | 1.800 | 1.000 | 1.000 | 1.000 | 0.400 | 0.500 | 0.667 | 0.667 | 1.000 | 1.000 | |||
GM | 0.550 | 0.763 | 1.000 | 1.066 | 1.098 | 1.148 | 1.500 | 1.750 | 1.800 | 1.000 | 1.000 | 1.000 | 0.376 | 0.464 | 0.606 | 0.606 | 0.874 | 1.000 |
PIPRECIA | sj | kj | qj | wj | DF | ||||||||
C1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.108 | 0.128 | 0.152 | 0.129 | |||
C2 | 1.032 | 1.048 | 1.098 | 0.902 | 0.952 | 0.968 | 1.033 | 1.050 | 1.108 | 0.111 | 0.134 | 0.168 | 0.136 |
C3 | 1.232 | 1.348 | 1.398 | 0.602 | 0.652 | 0.768 | 1.346 | 1.611 | 1.842 | 0.145 | 0.206 | 0.279 | 0.208 |
C4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.346 | 1.611 | 1.842 | 0.145 | 0.206 | 0.279 | 0.208 |
C5 | 0.250 | 0.286 | 0.333 | 1.667 | 1.714 | 1.750 | 0.769 | 0.940 | 1.105 | 0.083 | 0.120 | 0.168 | 0.122 |
C6 | 0.550 | 0.763 | 1.000 | 1.000 | 1.237 | 1.450 | 0.531 | 0.760 | 1.105 | 0.057 | 0.097 | 0.168 | 0.102 |
C7 | 1.066 | 1.098 | 1.148 | 0.852 | 0.902 | 0.934 | 0.568 | 0.842 | 1.297 | 0.061 | 0.108 | 0.197 | 0.115 |
SUM | 6.594 | 7.814 | 9.299 | ||||||||||
PIPRECIA-I | sj’ | kj’ | qj’ | wj’ | DF | ||||||||
c1 | 0.606 | 0.874 | 1.000 | 1.000 | 1.126 | 1.394 | 0.652 | 2.072 | 4.208 | 0.028 | 0.145 | 0.606 | 0.202 |
c2 | 0.376 | 0.464 | 0.606 | 1.394 | 1.536 | 1.624 | 0.909 | 2.334 | 4.208 | 0.039 | 0.163 | 0.606 | 0.216 |
c3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.476 | 3.584 | 5.867 | 0.063 | 0.251 | 0.845 | 0.319 |
c4 | 1.500 | 1.750 | 1.800 | 0.200 | 0.250 | 0.500 | 1.476 | 3.584 | 5.867 | 0.063 | 0.251 | 0.845 | 0.319 |
C5 | 1.066 | 1.098 | 1.148 | 0.852 | 0.902 | 0.934 | 0.738 | 0.896 | 1.173 | 0.032 | 0.063 | 0.169 | 0.075 |
C6 | 0.550 | 0.763 | 1.000 | 1.000 | 1.237 | 1.450 | 0.690 | 0.809 | 1.000 | 0.030 | 0.057 | 0.144 | 0.067 |
C7 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.043 | 0.070 | 0.144 | 0.078 | |||
SUM | 6.943 | 14.278 | 23.323 | 1.276 |
PIPR. | C1 | C2 | C3 | C4 | ||||||||
DM1 | 0.286 | 0.333 | 0.400 | 1.100 | 1.150 | 1.200 | 1.300 | 1.450 | 1.500 | |||
DM2 | 0.250 | 0.286 | 0.333 | 1.000 | 1.000 | 1.200 | 1.300 | 1.450 | 1.500 | |||
DM3 | 0.250 | 0.286 | 0.333 | 1.100 | 1.150 | 1.200 | 1.300 | 1.450 | 1.500 | |||
GM | 0.261 | 0.301 | 0.354 | 1.066 | 1.098 | 1.200 | 1.300 | 1.450 | 1.500 | |||
PIPR-I | C4 | C3 | C2 | C1 | ||||||||
DM1 | 0.400 | 0.500 | 0.667 | 0.667 | 1.000 | 1.000 | 1.200 | 1.300 | 1.350 | |||
DM2 | 0.333 | 0.400 | 0.500 | 0.667 | 1.000 | 1.000 | 1.200 | 1.300 | 1.350 | |||
DM3 | 0.400 | 0.500 | 0.667 | 0.500 | 0.667 | 1.000 | 1.200 | 1.300 | 1.350 | |||
GM | 0.376 | 0.464 | 0.606 | 0.606 | 0.874 | 1.000 | 1.200 | 1.300 | 1.350 |
PIPRECIA | sj | kj | qj | wj | DF | ||||||||
C1 | 1.000 | 1.000 | 1,000 | 1.000 | 1.000 | 1.000 | 0.267 | 0.292 | 0.326 | 0.293 | |||
C2 | 0.261 | 0.301 | 0.354 | 1.646 | 1.699 | 1.739 | 0.575 | 0.589 | 0.608 | 0.154 | 0.172 | 0.198 | 0.173 |
C3 | 1.066 | 1.098 | 1.148 | 0.852 | 0.902 | 0.934 | 0.616 | 0.652 | 0.713 | 0.164 | 0.190 | 0.232 | 0.193 |
C4 | 1.300 | 1.450 | 1.500 | 0.500 | 0.550 | 0.700 | 0.879 | 1.186 | 1.426 | 0.235 | 0.346 | 0.464 | 0.347 |
SUM | 3.070 | 3.427 | 3.746 | ||||||||||
PIPRECIA-I | sj’ | kj’ | qj’ | wj’ | DF | ||||||||
c1 | 1.200 | 1.300 | 1.350 | 0.650 | 0.700 | 0.800 | 0.552 | 0.826 | 1.103 | 0.156 | 0.270 | 0.423 | 0277 |
c2 | 0.606 | 0.874 | 1.000 | 1.000 | 1.126 | 1.394 | 0.442 | 0.578 | 0.717 | 0.125 | 0.189 | 0.275 | 0.193 |
c3 | 0.376 | 0.464 | 0.606 | 1.394 | 1.536 | 1.624 | 0.616 | 0.651 | 0.717 | 0.174 | 0.213 | 0.275 | 0.217 |
c4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.283 | 0.327 | 0.383 | 0.329 | |||
SUM | 2.610 | 3.055 | 3.538 |
Rank | Rank | d | d2 | I | II | wj | |||
---|---|---|---|---|---|---|---|---|---|
C1 | 2 | 2 | 0 | 0 | C1 | 0.271 | 0.318 | 0.295 | 2 |
C2 | 1 | 1 | 0 | 0 | C2 | 0.386 | 0.475 | 0.430 | 1 |
C3 | 3 | 3 | 0 | 0 | C3 | 0.221 | 0.189 | 0.205 | 3 |
C4 | 4 | 4 | 0 | 0 | C4 | 0.126 | 0.105 | 0.116 | 4 |
SCC | 1.000 | ||||||||
PCC | 0.987 |
Rank | Rank | d | d2 | I | II | wj | |||
---|---|---|---|---|---|---|---|---|---|
C1 | 3 | 3 | 0 | 0 | C1 | 0.160 | 0.157 | 0.158 | 3 |
C2 | 2 | 2 | 0 | 0 | C2 | 0.178 | 0.183 | 0.181 | 2 |
C3 | 1 | 1 | 0 | 0 | C3 | 0.238 | 0.255 | 0.246 | 1 |
C4 | 4 | 4 | 0 | 0 | C4 | 0.151 | 0.141 | 0.146 | 4 |
C5 | 5 | 5 | 0 | 0 | C5 | 0.121 | 0.119 | 0.120 | 5 |
C6 | 6 | 6 | 0 | 0 | C6 | 0.099 | 0.100 | 0.100 | 6 |
C7 | 7 | 7 | 0 | 0 | C7 | 0.090 | 0.095 | 0.093 | 7 |
SCC | 1.000 | ||||||||
PCC | 0.992 |
Rank | Rank | d | d2 | I | II | wj | |||
---|---|---|---|---|---|---|---|---|---|
C1 | 5 | 5 | 0 | 0 | C1 | 0.110 | 0.113 | 0.112 | 5 |
C2 | 4 | 4 | 0 | 0 | C2 | 0.111 | 0.114 | 0.112 | 4 |
C3 | 2 | 2 | 0 | 0 | C3 | 0.170 | 0.170 | 0.170 | 2 |
C4 | 1 | 1 | 0 | 0 | C4 | 0.171 | 0.171 | 0.171 | 1 |
C5 | 3 | 3 | 0 | 0 | C5 | 0.144 | 0.151 | 0.148 | 3 |
C6 | 6 | 7 | −1 | 1 | C6 | 0.099 | 0.104 | 0.102 | 7 |
C7 | 8 | 8 | 0 | 0 | C7 | 0.085 | 0.093 | 0.089 | 8 |
C8 | 7 | 6 | 1 | 1 | C8 | 0.096 | 0.110 | 0.103 | 6 |
C9 | 9 | 9 | 0 | 0 | C9 | 0.070 | 0.082 | 0.076 | 9 |
SCC | 0.983 | ||||||||
PCC | 0.995 |
Rank | Rank | d | d2 | I | II | wj | |||
---|---|---|---|---|---|---|---|---|---|
C1 | 4 | 4 | 0 | 0 | C1 | 0.129 | 0.202 | 0.165 | 4 |
C2 | 3 | 3 | 0 | 0 | C2 | 0.136 | 0.216 | 0.176 | 3 |
C3 | 1 | 1 | 0 | 0 | C3 | 0.208 | 0.319 | 0.263 | 1 |
C4 | 1 | 1 | 0 | 0 | C4 | 0.208 | 0.319 | 0.263 | 1 |
C5 | 5 | 6 | −1 | 1 | C5 | 0.122 | 0.075 | 0.099 | 5 |
C6 | 7 | 7 | 0 | 0 | C6 | 0.102 | 0.067 | 0.084 | 7 |
C7 | 6 | 5 | 1 | 1 | C7 | 0.115 | 0.078 | 0.096 | 6 |
SCC | 0.964 | ||||||||
PCC | 0.924 |
Rank | Rank | d | d2 | I | II | wj | |||
---|---|---|---|---|---|---|---|---|---|
C1 | 2 | 2 | 0 | 0 | C1 | 0.293 | 0.277 | 0.285 | 2 |
C2 | 4 | 4 | 0 | 0 | C2 | 0.173 | 0.193 | 0.183 | 4 |
C3 | 3 | 3 | 0 | 0 | C3 | 0.193 | 0.217 | 0.205 | 3 |
C4 | 1 | 1 | 0 | 0 | C4 | 0.347 | 0.329 | 0.338 | 1 |
SCC | 1.000 | ||||||||
PCC | 0.994 |
Dimension Elements | Local Value | Global Value | Rank |
---|---|---|---|
STRENGTHS | |||
C1 | 0.158 | 0.047 | 10 |
C2 | 0.181 | 0.053 | 7 |
C3 | 0.246 | 0.073 | 3 |
C4 | 0.146 | 0.043 | 13 |
C5 | 0.120 | 0.035 | 17 |
C6 | 0.100 | 0.029 | 21 |
C7 | 0.093 | 0.027 | 22 |
WEAKNESSES | |||
C1 | 0.112 | 0.048 | 9 |
C2 | 0.112 | 0.048 | 8 |
C3 | 0.170 | 0.073 | 2 |
C4 | 0.171 | 0.074 | 1 |
C5 | 0.148 | 0.064 | 4 |
C6 | 0.102 | 0.044 | 12 |
C7 | 0.089 | 0.038 | 15 |
C8 | 0.103 | 0.044 | 11 |
C9 | 0.076 | 0.033 | 20 |
OPPORTUNITIES | |||
C1 | 0.165 | 0.034 | 18 |
C2 | 0.176 | 0.036 | 16 |
C3 | 0.263 | 0.054 | 5 |
C4 | 0.263 | 0.054 | 5 |
C5 | 0.099 | 0.020 | 25 |
C6 | 0.084 | 0.017 | 27 |
C7 | 0.096 | 0.020 | 26 |
THREATS | |||
C1 | 0.285 | 0.033 | 19 |
C2 | 0.183 | 0.021 | 24 |
C3 | 0.205 | 0.024 | 23 |
C4 | 0.338 | 0.039 | 14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stević, Ž.; Stjepanović, Ž.; Božičković, Z.; Das, D.K.; Stanujkić, D. Assessment of Conditions for Implementing Information Technology in a Warehouse System: A Novel Fuzzy PIPRECIA Method. Symmetry 2018, 10, 586. https://doi.org/10.3390/sym10110586
Stević Ž, Stjepanović Ž, Božičković Z, Das DK, Stanujkić D. Assessment of Conditions for Implementing Information Technology in a Warehouse System: A Novel Fuzzy PIPRECIA Method. Symmetry. 2018; 10(11):586. https://doi.org/10.3390/sym10110586
Chicago/Turabian StyleStević, Željko, Željko Stjepanović, Zdravko Božičković, Dillip Kumar Das, and Dragiša Stanujkić. 2018. "Assessment of Conditions for Implementing Information Technology in a Warehouse System: A Novel Fuzzy PIPRECIA Method" Symmetry 10, no. 11: 586. https://doi.org/10.3390/sym10110586