Convergence Analysis of an Inexact Three-Operator Splitting Algorithm
Abstract
:1. Introduction
Algorithm 1: An inexact three-operator splitting algorithm |
Input: For arbitrary , choose and . |
For each , compute
|
Stop when a given stopping criterion is met. |
Output: and . |
2. Preliminaries
- (1)
- The set of zeros of A is ;
- (2)
- The domain of A is ;
- (3)
- The range of A is ;
- (4)
- The graph of A is ;
- (5)
- The resolvent of A is .
- (1)
- T is firmly nonexpansive.
- (2)
- is nonexpansive.
- (3)
- For all , .
- (1)
- T is α-averaged.
- (2)
- is nonexpansive.
- (3)
- For all , .
- (1)
- is Fejér monotone with respect to .
- (2)
- converges strongly to 0.
- (3)
- converges weakly to a point in .
- (1)
- is Fejér monotone with respect to .
- (2)
- converges strongly to 0.
- (3)
- converges weakly to a point in .
3. An Inexact Three-Operator Splitting Algorithm
- (1)
- is Fejér-monotone with respect to .
- (2)
- converges strongly to zero.
- (3)
- converges weakly to a fixed point of T.
- (4)
- If , then there exists a constant such that, for any ,In addition, we have
- (5)
- If , then there exists such that the iterative sequence converges weakly to .
- (6)
- If , then there exists such that the iterative sequence converges weakly to .
- (7)
- Let and assume that there exists . Suppose that one of the following conditions hold:
- (a)
- A is uniformly monotone on every nonempty bounded subset of ;
- (b)
- B is uniformly monotone on every nonempty bounded subset of ;
- (c)
- C is demiregular at every point .
- (1)
- converges weakly to a solution ;
- (2)
- as for ;
- (3)
- as ;
- (4)
- Let and let . Suppose that one of the following conditions holds:
- (a)
- A is uniformly monotone on every nonempty bounded subset of ;
- (b)
- C is demiregular at each point .
- (1)
- converges weakly to a fixed point of T;
- (2)
- as ;
- (3)
- Let and be a fixed point of T. Then the iterative sequence converges weakly to ;
- (4)
- Let and be a fixed point of T. Then the iterative sequence converges weakly to ;
- (5)
- Let and let . Suppose that one of the following conditions holds:
- (a)
- A is uniformly monotone on every nonempty bounded subset of ;
- (b)
- B is uniformly monotone on every nonempty bounded subset of .
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goldstein, A.A. Convex programming in Hilbert space. Bull. Am. Math. Soc. 1964, 70, 709–710. [Google Scholar] [CrossRef]
- Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979. [Google Scholar] [CrossRef]
- Combettes, P.L.; Pesquet, J.C. A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 2007, 1, 564–574. [Google Scholar] [CrossRef]
- Tseng, P. A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 2000, 38, 431–446. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 2009, 18, 2419–2434. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Loris, I.; Verhoeven, C. On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. Inverse Probl. 2011, 27, 125007. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.J.; Huang, J.G.; Zhang, X.Q. A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 2013, 29, 025011. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distrituted optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2010, 3, 1–122. [Google Scholar] [CrossRef]
- Yang, J.F.; Yuan, X.M. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 2013, 82, 301–329. [Google Scholar] [CrossRef]
- He, B.S.; Liu, H.; Wang, Z.R.; Yuan, X.M. A strictly contractive Peaceman-Rachford splitting method for convex programming. SIAM J. Optim. 2014, 24, 1011–1040. [Google Scholar] [CrossRef] [PubMed]
- Chambolle, A.; Pock, T. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 2011, 40, 120–145. [Google Scholar] [CrossRef]
- He, B.S.; Yuan, X.M. Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective. SIAM J. Imaging Sci. 2012, 5, 119–149. [Google Scholar] [CrossRef]
- Condat, L. A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 2013, 158, 460–479. [Google Scholar] [CrossRef] [Green Version]
- Vũ, B.C. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 2013, 38, 667–681. [Google Scholar] [CrossRef]
- Yu, Y.C.; Peng, J.G. A modified primal-dual method with applications to some sparse recovery problems. Appl. Math. Comput. 2018, 333, 76–94. [Google Scholar] [CrossRef]
- Combettes, P.L.; Pesquet, J.C. Proximal splitting methods in signal processing. In Fixed-Point Algorithm for Inverse Problems in Science and Engineering; Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H., Eds.; Springer: New York, NY, USA, 2010; pp. 185–212. [Google Scholar]
- Komodakis, N.; Pesquet, J.C. Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Process. Mag. 2015, 32, 31–54. [Google Scholar] [CrossRef]
- Parikh, N.; Boyd, S. Proximal algorithms. Found. Trends Optim. 2014, 1, 123–231. [Google Scholar] [CrossRef]
- Raguet, H.; Fadili, J.; Peyré, G. A generalized forward-backward splitting. SIAM J. Imaging Sci. 2013, 6, 1199–1226. [Google Scholar] [CrossRef]
- Raguet, H.; Landrieu, L. Preconditioning of a generalized forward-backward splitting and application to optimization on graphs. SIAM J. Imaging Sci. 2015, 8, 2706–2739. [Google Scholar] [CrossRef]
- Combettes, P.L.; Vũ, B.C. Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 2014, 63, 1289–1318. [Google Scholar] [CrossRef]
- Latafat, P.; Patrinos, P. Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators. Comput. Optim. Appl. 2017, 68, 57–93. [Google Scholar] [CrossRef]
- Lorenz, D.A.; Pock, T. An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 2015, 51, 311–325. [Google Scholar] [CrossRef]
- Davis, D.; Yin, W.T. A three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal. 2017, 25, 829–858. [Google Scholar] [CrossRef]
- Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 2005, 4, 1168–1200. [Google Scholar] [CrossRef]
- Eckstein, J.; Bertsekas, D. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 1992, 55, 293–318. [Google Scholar] [CrossRef]
- Briceño-Arias, L.M. Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization 2015, 64, 1239–1261. [Google Scholar] [CrossRef]
- Marin, M. Weak solutions in elasticity of dipolar porous materials. Math. Probl. Eng. 2008, 2008, 158908. [Google Scholar] [CrossRef]
- Sidky, E.Y.; Jørgensen, J.H.; Pan, X.C. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm. Phys. Med. Biol. 2012, 57, 3065–3091. [Google Scholar] [CrossRef] [PubMed]
- Chirilǒ, A.; Marin, M. The theory of generalized thermoelasticity with fractional order strain for dipolar materials with double porosity. J. Mater. Sci. 2018, 53, 3470–3482. [Google Scholar] [CrossRef]
- Cevher, V.; Vũ, B.C.; Yurtsever, A. Stochastic Forward-Douglas-Rachford Splitting for Monotone Inclusions. 2018. Available online: https://infoscience.epfl.ch/record/215759/files/CVY2016_preprint.pdf (accessed on 25 August 2018).
- Yurtsever, A.; Vũ, B.C.; Cevher, V. Stochastic three-composite convex minimization. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 4322–4330. [Google Scholar]
- Pedregosa, F.; Gidel, G. Adaptive three operator splitting. In Proceedings of the 35th International Conference on Machine Learning, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018; pp. 4085–4094. [Google Scholar]
- Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef]
- Combettes, P.L. Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 2004, 53, 475–504. [Google Scholar] [CrossRef]
- He, B.S.; Yuan, X.M. An accelerated inexact proximal point algorithm for convex minimization. J. Optim. Theory Appl. 2012, 154, 536–548. [Google Scholar] [CrossRef]
- Salzo, S.; Villa, S. Inexact and accelerated proximal point algorithm. J. Convex Anal. 2012, 19, 1167–1192. [Google Scholar]
- Villa, S.; Salzo, S.; Baldassarre, L.; Verri, A. Accelerated and inexact forward-backward algorithms. SIAM J. Optim. 2013, 23, 1607–1633. [Google Scholar] [CrossRef]
- Schmidt, M.; Roux, N.L.; Bach, F. Convergence rates of inexact proximal-gradient methods for convex optimization. In Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain, 12–17 December 2011; pp. 1458–1466. [Google Scholar]
- Solodov, M.V.; Svaiter, B.F. An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Math. Oper. Res. 2000, 25, 214–230. [Google Scholar] [CrossRef]
- Eckstein, J.; Yao, W. Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM. Math. Program. 2018, 170, 417–444. [Google Scholar] [CrossRef]
- Alves, M.M.; Geremia, M. Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions. arXiv, 2017; arXiv:1711.11551. [Google Scholar]
- Solodov, M.V.; Svaiter, B.F. A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 2001, 22, 1013–1035. [Google Scholar] [CrossRef]
- Iusem, A.N.; Pennanen, T.; Svaiter, B.F. Inexact variants of the proximal point algorithm without monotonicity. SIAM J. Optim. 2003, 13, 1080–1097. [Google Scholar] [CrossRef]
- Han, D. Inexact operator splitting methods with selfadaptive strategy for variational inequality problems. J. Optim. Theory Appl. 2007, 132, 227–243. [Google Scholar] [CrossRef]
- Parente, L.A.; Lotito, P.A.; Solodov, M.V. A class of inexact variable metric proximal point algorithms. SIAM J. Optim. 2008, 19, 240–260. [Google Scholar] [CrossRef]
- Chouzenoux, E.; Pesquet, J.C.; Repetti, A. Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 2014, 162, 107–132. [Google Scholar] [CrossRef] [Green Version]
- Chancelier, J.P. Auxiliary problem principle and inexact variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. arXiv, 2015; arXiv:1508.02994. [Google Scholar]
- Kang, M.; Kang, M.; Jung, M. Inexact accelerated augmented Lagrangian methods. Comput. Optim. Appl. 2015, 62, 373–404. [Google Scholar] [CrossRef]
- Li, J.Y.; Wu, Z.Y.; Wu, C.Z.; Long, Q.; Wang, X.Y. An inexact dual fast gradient-projection method for separable convex optimization with linear coupled constraints. J. Optim. Theory Appl. 2016, 168, 153–171. [Google Scholar] [CrossRef]
- Reem, D.; De Pierro, A. A new convergence analysis and perturbation resilience of some accelerated proximal forward-backward algorithms with errors. Inverse Probl. 2017, 33, 044001. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: New York, NY, USA, 2011. [Google Scholar]
- Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20, 103–120. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, C.; Tang, Y.; Cho, Y.J. Convergence Analysis of an Inexact Three-Operator Splitting Algorithm. Symmetry 2018, 10, 563. https://doi.org/10.3390/sym10110563
Zong C, Tang Y, Cho YJ. Convergence Analysis of an Inexact Three-Operator Splitting Algorithm. Symmetry. 2018; 10(11):563. https://doi.org/10.3390/sym10110563
Chicago/Turabian StyleZong, Chunxiang, Yuchao Tang, and Yeol Je Cho. 2018. "Convergence Analysis of an Inexact Three-Operator Splitting Algorithm" Symmetry 10, no. 11: 563. https://doi.org/10.3390/sym10110563