Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Owa, S. (Eds.) Current Topics in Analytic Function Theory; World Scientific Publishing Company: London, UK, 1992. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Incorporated: New York, NY, USA, 2000; p. 225. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar]
- Noor, K.I. Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roum. Math. Pure Appl. 1983, 28, 731–739. [Google Scholar]
- Ehrenborg, R. The Hankel determinant of exponential polynomials. Am. Math. Mon. 2000, 107, 557–560. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine benberkung uber ungerada schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Koepf, W. On the Fekete-Szego problem for close-to-convex functions. Proc. Am. Math. Soc. 1987, 101, 89–95. [Google Scholar]
- Koepf, W. On the Fekete-Szego problem for close-to-convex functions II. Arch. Math. 1987, 49, 420–433. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Hussain, S.; Raziq, A.; Raza, M. The Fekete-Szego functional for a subclass of analytic functions associated with quasi-subordination. Carpath. J. Math. 2018, 34, 103–113. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete-Szego problem for a subclass of close-to-convex functions. Complex Var. Theory Appl. 2001, 44, 145–163. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. The Fekete-Szego functional problems for some classes of m-fold symmetric bi-univalent functions. J. Math. Inequal. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Bansal, D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 2013, 26, 103–107. [Google Scholar] [CrossRef]
- Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 2015, 52, 1139–1148. [Google Scholar] [CrossRef]
- Caglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turkish J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 13, 619–625. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Subramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 281, 1–17. [Google Scholar] [CrossRef]
- Raza, M.; Malik, S.N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of bernoulli. J. Inequal. Appl. 2013, 1, 1–8. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altinkaya, S.; Yalcin, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018, 32, 503–516. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Tang, H.; Ma, L.-N. Upper bound of third Hankel determinant for a class of analytic functions. Pure Appl. Math. 2017, 33, 211–220. (In Chinese) [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent functions. J. Math. Soc. Jpn. 1975, 49, 759–780. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.-Y.; Tang, H.; Niu, X.-M. Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function. Symmetry 2018, 10, 501. https://doi.org/10.3390/sym10100501
Zhang H-Y, Tang H, Niu X-M. Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function. Symmetry. 2018; 10(10):501. https://doi.org/10.3390/sym10100501
Chicago/Turabian StyleZhang, Hai-Yan, Huo Tang, and Xiao-Meng Niu. 2018. "Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function" Symmetry 10, no. 10: 501. https://doi.org/10.3390/sym10100501
APA StyleZhang, H.-Y., Tang, H., & Niu, X.-M. (2018). Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function. Symmetry, 10(10), 501. https://doi.org/10.3390/sym10100501