Prediction of Clearance of Monoclonal and Polyclonal Antibodies and Non-Antibody Proteins in Children: Application of Allometric Scaling
Abstract
:1. Introduction
- I.
- Using a power function as shown in Equation (2).
- II.
- By linearization of Equation (2) using log transformation as shown in Equation (3).
2. Methods
2.1. Prediction of Clearance
2.2. Statistical Analysis
3. Results
3.1. Monoclonal Antibodies
3.2. Polyclonal Antibodies
3.3. Therapeutic Proteins (Non-Antibodies)
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Gibaldi, M. Biopharmaceutics and Clinical Pharmacokinetics; Lea & Febiger: Philadelphia, PA, USA, 1984; pp. 257–285. [Google Scholar]
- Mahmood, I. Prediction of drug clearance in premature and mature neonates, infants, and children ≤ 2 years of age: A comparison of the predictive performance of 4 allometric models. J. Clin. Pharmacol. 2016, 56, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I.; Staschen, C.M.; Goteti, K. Prediction of drug clearance in children: An evaluation of the predictive performance of several models. AAPS J. 2014, 16, 334–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, I. Mechanistic versus allometric models for the prediction of drug clearance in neonates (<3 months of age). J. Clin. Pharmacol. 2015, 55, 718–720. [Google Scholar] [PubMed]
- Mahmood, I.; Ahmad, T.; Mansoor, N.; Sharib, S.M. Prediction of clearance in neonates and infants (≤3 months of age) for drugs that are glucuronidated: A comparative study between allometric scaling and physiologically based pharmacokinetic modeling. J. Clin. Pharmacol. 2017, 57, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I.; Tegenge, M.A. A comparative study between allometric scaling and physiologically based pharmacokinetic modeling for the prediction of drug clearance from neonates to adolescents. J. Clin. Pharmacol. 2019, 59, 189–197. [Google Scholar] [CrossRef]
- Mahmood, I. Initiation of pediatric clinical trials for coagulation factors: Application of pharmacokinetics and allometry to first-in-pediatric dose selection. J. Clin. Pharmacol. 2019, 59, 829–834. [Google Scholar] [CrossRef]
- Boxenbaum, H. Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug Metab. Rev. 1984, 15, 1071. [Google Scholar] [CrossRef]
- Kovarik, J.M.; Gridelli, B.G.; Martin, S.; Rodeck, B.; Melter, M.; Dunn, S.P.; Merion, R.M.; Tzakis, A.G.; Alonso, E.; Bucuvalas, J.; et al. Basiliximab in pediatric liver transplantation: A pharmacokinetic-derived dosing algorithm. Pediatr. Transplant. 2002, 6, 224–230. [Google Scholar] [CrossRef]
- Kovarik, J.M.; Offner, G.; Broyer, M.; Niaudet, P.; Loirat, C.; Mentser, M.; Lemire, J.; Crocker, J.F.; Cochat, P.; Clark, G.; et al. A rational dosing algorithm for basiliximab (Simulect) in pediatric renal transplantation based on pharmacokinetic-dynamic evaluations. Transplantation 2002, 74, 966–971. [Google Scholar] [CrossRef]
- Trippett, T.M.; Herzog, C.; Whitlock, J.A.; Wolff, J.; Kuttesch, J.; Bagatell, R.; Hunger, S.P.; Boklan, J.; Smith, A.A.; Arceci, R.J.; et al. Phase I and pharmacokinetic study of cetuximab and irinotecan in children with refractory solid tumors: A study of the pediatric oncology experimental therapeutic investigators’ consortium. J. Clin. Oncol. 2009, 27, 5102–5108. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.R.; Moore, D.F.; Hidalgo, M.; Doroshow, J.H.; Poplin, E.A.; Goodin, S.; Mauro, D.; Rubin, E.H. Pharmacokinetics of cetuximab after administration of escalating single dosing and weekly fixed dosing in patients with solid tumors. Clin. Cancer Res. 2006, 12, 6517–6522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckwalter, M.; Dowell, J.A.; Korth-Bradley, J.; Gorovits, B.; Mayer, P.R. Pharmacokinetics of gemtuzumab ozogamicin as a single-agent treatment of pediatric patients with refractory or relapsed acute myeloid leukemia. J. Clin. Pharmacol. 2004, 44, 873–880. [Google Scholar] [CrossRef]
- Burns, J.C.; Best, B.M.; Mejias, A.; Mahony, L.; Fixler, D.E.; Jafri, H.S.; Melish, M.E.; Jackson, M.A.; Asmar, B.I.; Lang, D.J.; et al. Infliximab treatment of intravenous immunoglobulin-resistant Kawasaki disease. J. Pediatr. 2008, 153, 833–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.; Kim, Y.; Kim, Y.S.; Körnicke, T.; Fuhr, R. A Randomized, Phase I Pharmacokinetic Study Comparing SB2 and Infliximab Reference Product (Remicade) in Healthy Subjects. BioDrugs 2015, 29, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyams, J.S.; Wilson, D.C.; Thomas, A.; Heuschkel, R.; Mitton, S.; Mitchell, B.; Daniels, R.; Libonati, M.A.; Zanker, S.; Kugathasan, S. International Natalizumab CD305 Trial Group. Natalizumab therapy for moderate to severe Crohn disease in adolescents. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 185–191. [Google Scholar] [CrossRef]
- FDA Package Insert of Natalizumab for Adults in Crohn Disease. Available online: https://www.medpagetoday.com/gastroenterology/inflammatoryboweldisease/7969 (accessed on 1 June 2020).
- Sun, H.; Van, L.M.; Floch, D.; Jiang, X.; Klein, U.R.; Abrams, K.; Sunkara, G. Pharmacokinetics and Pharmacodynamics of Canakinumab in Patients with Systemic Juvenile Idiopathic Arthritis. J. Clin. Pharmacol. 2016, 56, 1516–1527. [Google Scholar] [CrossRef]
- Kuemmerle-Deschner, J.B.; Ramos, E.; Blank, N.; Roesler, J.; Felix, S.D.; Jung, T.; Stricker, K.; Chakraborty, A.; Tannenbaum, S.; Wright, A.M.; et al. Canakinumab (ACZ885, a fully human IgG1 anti-IL-1β mAb) induces sustained remission in pediatric patients with cryopyrin-associated periodic syndrome (CAPS). Arthritis Res. Ther. 2011, 13, R34. [Google Scholar] [CrossRef] [Green Version]
- López, E.L.; Contrini, M.M.; Glatstein, E.; González Ayala, S.; Santoro, R.; Allende, D.; Ezcurra, G.; Teplitz, E.; Koyama, T.; Matsumoto, Y.; et al. Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against Shiga-like toxin 2 in healthy adults and in pediatric patients infected with Shiga-like toxin-producing Escherichia coli. Antimicrob. Agents Chemother. 2010, 54, 239–243. [Google Scholar] [CrossRef] [Green Version]
- FDA Package Insert of Toclizumab. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125276s092lbl.pdf (accessed on 1 June 2020).
- Pescovitz, M.D.; Knechtle, S.; Alexander, S.R.; Colombani, P.; Nevins, T.; Nieforth, K.; Bouw, M.R. Safety and pharmacokinetics of daclizumab in pediatric renal transplant recipients. Pediatr. Transplant. 2008, 12, 447–455. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Tan, M.; Lin, B.; Hou, S.; Qian, W.; Li, B.; Zhang, D.; Zhou, B.; Wang, H.; et al. Two doses of humanized anti-CD25 antibody in renal transplantation: A preliminary comparative study. MAbs 2009, 1, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Moudgil, A.; Dharnidharka, V.R.; Feig, D.I.; Warshaw, B.L.; Perera, V.; Murthy, B.; Roberts, M.E.; Polinsky, M.S.; Ettenger, R.B. Phase I study of single-dose pharmacokinetics and pharmacodynamics of belatacept in adolescent kidney transplant recipients. Am. J. Transplant. 2019, 19, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.P.; Khan, A.A.; Esser, M.T.; Jensen, K.; Takas, T.; Kankam, M.K.; Villafana, T.; Dubovsky, F. Safety, Tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob. Agents Chemother. 2017, 61, e01714-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domachowske, J.B.; Khan, A.A.; Esser, M.T.; Jensen, K.; Takas, T.; Villafana, T.; Dubovsky, F.; Griffin, M.P. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr. Infect. Dis. J. 2018, 37, 886–892. [Google Scholar] [CrossRef]
- Lu, J.F.; Bruno, R.; Eppler, S.; Novotny, W.; Lum, B.; Gaudreault, J. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother. Pharmacol. 2008, 62, 779–786. [Google Scholar] [CrossRef]
- Gojo, J.; Sauermann, R.; Knaack, U.; Slavc, I.; Peyrl, A. Pharmacokinetics of Bevacizumab in Three Patients Under the Age of 3 Years with CNS Malignancies. Drugs R D 2017, 17, 469–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbie, G.J.; Zhao, L.; Mondick, J.; Losonsky, G.; Roskos, L.K. Population Pharmacokinetics of Palivizumab, a Humanized Anti-Respiratory Syncytial Virus Monoclonal Antibody, in Adults and Children. Antimicrob. Agents Chemother. 2012, 56, 4927–4936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA Package Insert of Pangyza. Available online: https://www.fda.gov/vaccines-blood-biologics (accessed on 1 June 2020).
- FDA Package Insert of Gamaplex 10%. Available online: https://www.fda.gov/media/102800/download (accessed on 1 June 2020).
- FDA Package Insert of GAMUNEX-C. Available online: https://www.fda.gov/media/70738/download (accessed on 1 June 2020).
- FDA Package Insert of Cuvitru. Available online: https://www.fda.gov/media/100531/download (accessed on 1 June 2020).
- FDA Package Insert of Hizentra. Available online: https://www.fda.gov/media/78466/download (accessed on 1 June 2020).
- Kyllonen, K.S.; Clapp, D.W.; Kliegman, R.M.; Baley, J.E.; Shenker, N.; Fanaroff, A.A.; Berger, M. Dosage of intravenously administered immune globulin and dosing interval required to maintain target levels of immunoglobulin G in low birth weight infants. J. Pediatr. 1989, 115, 1013–1016. [Google Scholar] [CrossRef]
- Weisman, L.E.; Fischer, G.W.; Marinelli, P.; Hemming, V.G.; Pierce, J.R.; Golden, S.M.; Peck, C.C. Pharmacokinetics of intravenous immunoglobulin in neonates. Vox Sang. 1989, 57, 243–248. [Google Scholar] [CrossRef]
- Forbes, T.J.; Hijazi, Z.M.; Young, G.; Ringewald, J.M.; Aquino, P.M.; Vincent, R.N.; Qureshi, A.M.; Rome, J.J.; Rhodes, J.F., Jr.; Jones, T.K.; et al. Pediatric catheterization laboratory anticoagulation with bivalirudin. Catheter. Cardiovasc. Interv. 2011, 77, 671–679. [Google Scholar] [CrossRef]
- Robson, R.; White, H.; Aylward, P.; Frampton, C. Bivalirudin pharmacokinetics and pharmacodynamics: Effect of renal function, dose, and gender. Clin. Pharmacol. Ther. 2002, 71, 433–439. [Google Scholar] [CrossRef]
- Uemura, O.; Hattori, M.; Hataya, H.; Ito, S.; Ito, N.; Akizawa, T. Pharmacokinetics of darbepoetin alfa after single, intravenous or subcutaneous administration in Japanese pediatric patients with chronic kidney disease. Clin. Exp. Nephrol. 2014, 18, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Lerner, G.; Kale, A.S.; Warady, B.A.; Jabs, K.; Bunchman, T.E.; Heatherington, A.; Olson, K.; Messer-Mann, L.; Maroni, B.J. Pharmacokinetics of darbepoetin alfa in pediatric patients with chronic kidney disease. Pediatr. Nephrol. 2002, 17, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.H.; Brocklebank, J.T.; Bowmer, C.J.; Ng, P.C. Pharmacokinetics of recombinant human erythropoietin in children with renal failure. Nephrol. Dial. Transplant. 1991, 6, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Kindler, J.; Eckardt, K.U.; Ehmer, B.; Jandeleit, K.; Kurtz, A.; Schreiber, A.; Scigalla, P.; Sieberth, H.G. Single-dose pharmacokinetics of recombinant human erythropoietin in patients with various degrees of renal failure. Nephrol. Dial. Transplant. 1989, 4, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Cairo, M.S.; Davenport, V.; Bessmertny, O.; Goldman, S.C.; Berg, S.L.; Kreissman, S.G.; Laver, J.; Shen, V.; Secola, R.; Van De Ven, C. Phase I/II dose escalation study of recombinant human interleukin-11 following ifosfamide, carboplatin and etoposide in children, adolescents and young adults with solid tumours or lymphoma: A clinical, haematological and biological study. Br. J. Haematol. 2005, 128, 49–58. [Google Scholar] [CrossRef]
- Barton, P.; Kalil, A.C.; Nadel, S.; Goldstein, B.; Okhuysen-Cawley, R.; Brilli, R.J.; Takano, J.S.; Martin, L.D.; Quint, P.; Yeh, T.S.; et al. Safety, pharmacokinetics, and pharmacodynamics of drotrecogin alfa (activated) in children with severe sepsis. Pediatrics 2004, 113, 7–17. [Google Scholar] [CrossRef]
- Danne, T.; Becker, R.H.; Heise, T.; Bittner, C.; Frick, A.D.; Rave, K. Pharmacokinetics, prandial glucose control, and safety of insulin glulisine in children and adolescents with type 1 diabetes. Diabetes Care 2005, 28, 2100–2105. [Google Scholar] [CrossRef] [Green Version]
- Rave, K.; Klein, O.; Frick, A.D.; Becker, R.H. Advantage of premeal-injected insulin glulisine compared with regular human insulin in subjects with type 1 diabetes. Diabetes Care 2006, 29, 1812–1817. [Google Scholar] [CrossRef] [Green Version]
- Peter, F.; Savoy, C.; Ji, H.J.; Juhasz, M.; Bidlingmaier, M.; Saenger, P. Pharmacokinetic and pharmacodynamic profile of a new sustained-release GH formulation, LB03002, in children with GH deficiency. Eur. J. Endocrinol. 2009, 160, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Bidlingmaier, M.; Kim, J.; Savoy, C.; Kim, M.J.; Ebrecht, N.; de la Motte, S.; Strasburger, C.J. Comparative pharmacokinetics and pharmacodynamics of a new sustained-release growth hormone (GH), LB03002, versus daily GH in adults with GH deficiency. J. Clin. Endocrinol. Metab. 2006, 91, 2926–2930. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lin, T.; Bertasso, A.; Evans, C.; Dorr, A.; Kolis, S.J.; Salgo, M.; Patel, I.; T20-310/NV16056 Study Group. Population pharmacokinetics of enfuvirtide in HIV-1-infected pediatric patients over 48 weeks of treatment. J. Clin. Pharmacol. 2007, 47, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Bartelink, I.H.; Boelens, J.J.; Bredius, R.G.; Egberts, A.C.; Wang, C.; Bierings, M.B.; Shaw, P.J.; Nath, C.E.; Hempel, G.; Zwaveling, J.; et al. Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: Towards individualized dosing. Clin. Pharmacokinet. 2012, 51, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Allegaert, K.; Peeters, M.Y.; Tibboel, D.; Danhof, M.; Knibbe, C.A. The allometric exponent for scaling clearance varies with age: A study on seven propofol datasets ranging from preterm neonates to adults. Br. J. Clin. Pharmacol. 2014, 77, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momper, J.D.; Mulugeta, Y.; Green, D.J.; Karesh, A.; Krudys, K.M.; Sachs, H.C.; Yao, L.P.; Burckart, G.J. Adolescent dosing and labeling since the Food and Drug Administration Amendments Act of 2007. JAMA Pediatr. 2013, 167, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, I.; Tegenge, M.A. A bodyweight-dependent allometric exponent model for scaling clearance of clotting factor VIII and IX from infants to adults. Haemophilia 2016, 22, e570–e573. [Google Scholar] [CrossRef]
- Mahmood, I. Allometric Extrapolation of Factors VII, VIII, and IX Clearance in Children from Adults. J. Thromb. Haemost. 2012, 10, 1609–1613. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, I. Prediction of Clearance, Volume of distribution, and Half-life of Drugs in Extremely Low to Low Birth Weight Neonates: An Allometric Approach. Eur. J. Drug. Metab. Pharmacokinet. 2017, 42, 601–610. [Google Scholar] [CrossRef]
- Wang, C.; Sadhavisvam, S.; Krekels, E.H.; Dahan, A.; Tibboel, D.; Danhof, M.; Vinks, A.A.; Knibbe, C.A. Developmental changes in morphine clearance across the entire paediatric age range are best described by a bodyweight-dependent exponent model. Clin. Drug. Investig. 2013, 33, 523–534. [Google Scholar] [CrossRef]
Age (Years) | Observed CL | Predicted CL | % Error |
---|---|---|---|
Basiliximab, Adult CL = 55 mL/h, Liver Transplantation | |||
<2 | 19 | 8 | −59 |
3.5 | 24 | 18 | −26 |
8.6 | 28 | 33 | 17 |
13.5 | 49 | 43 | −13 |
Basiliximab, Adult CL = 37 mL/h, Renal Transplantation | |||
1–4 y | 15 | 15 | −2 |
6–12 y | 19 | 24 | 28 |
14–16 y | 30 | 31 | 3 |
Cetuximab, Adult CL = 46 mL/h, Solid Tumors | |||
1–12 y | 18 | 24 | 35 |
13–18 y | 32 | 38 | 20 |
Gemtuzumab, Adult CL = 270 mL/h, Refractory or Relapsed Acute Myeloid Leukemia | |||
1–5 y | 120 | 87 | −27 |
>5–12 y | 180 | 161 | −11 |
>12–16 y | 230 | 225 | −2 |
Infliximab, Healthy Adult CL = 9.5 mL/h, children = Kawasaki Disease | |||
0.7–3.1 y | 1.7 | 2.0 | 20 |
0.2–6.25 y | 3.0 | 2.7 | −10 |
Natalizumab, Adult CL = 22 mL/h, Crohn Disease | |||
11–17 y | 18 | 20 | 12 |
Canakinumab, Adult CL = 9 mL/h, Systemic Juvenile Idiopathic Arthritis (SJIA), SC | |||
0.7–1.7 y | 1.8 | 1.3 | −27 |
2.7–4.9 y | 4.6 | 3.2 | −30 |
5.9–11.1 y | 7.2 | 5.9 | −17 |
12–17.2 y | 8.3 | 7.5 | −9 |
Canakinumab, Adult CL = 9.5 mL/h, Cryopyrin-Associated Periodic Syndrome (CAPS), SC | |||
Age not known | 2.4 | 2.7 | 9 |
youngest may | 5.4 | 5.1 | −6 |
be 4 years | 9.7 | 6.9 | −29 |
Urtoxazumab, Healthy Adult CL = 6 mL/h, children = Shiga-Like Toxin (Escherichia coli) | |||
2.9 | 1.8 | 1.9 | 3 |
Tocilizumab, Adult CL = 20.3 mL/h, Polyarticular Juvenile Idiopathic Arthritis | |||
20 kg, age not known | 8.6 | 7.9 | −8 |
Daclizumab, Adult CL = 13 mL/h, Renal Transplant | |||
<5 y | 5.2 | 3.2 | −38 |
6–12 y | 10.8 | 6.9 | −36 |
13–17 y | 14.5 | 10.4 | −28 |
Belacept, Adult CL = 36 mL/h, Kidney Transplant | |||
13–17 y | 28 | 32 | 12 |
MEDI8897, Healthy Adults (CL = 65 mL/day) and Healthy Infants, Intramuscular | |||
Dose (mg/kg)/age at the time of study, CL is in mL/day | |||
10 (4.2 months) | 4.1 | 5.3 | 30 |
25 (6.7 months) | 6.1 | 6.3 | 4 |
50 (7 months) | 7.0 | 6.6 | −6 |
Bevacizumab,Adult CL = 9.8 mL/h, Solid Tumors, Children = CNS Malignancies | |||
11–31 months | 2.8 | 2.6 | −7 |
Palivizumab, Adult CL = 198 mL/Day, Adult and Children = Respiratory Syncytial Virus, Intramuscular | |||
12.3 months | 11.0 | 12.7 | 15 |
Age (Years) | Observed CL | Predicted CL | % Error |
---|---|---|---|
Panzyga (IV), Adult CL = 101 mL/day, Baseline Uncorrected | |||
2–5.9 | 48 | 39 | −18 |
6–11.9 | 50 | 48 | −4 |
12–16 | 82 | 78 | −4 |
Panzyga (IV), Adult CL = 504 mL/day, Baseline Corrected | |||
2–5.9 | 192 | 197 | 3 |
6–11.9 | 200 | 240 | 20 |
12–16 | 504 | 392 | −22 |
Gammaplex 10% (IV), Adult CL = 456 mL/day, Baseline Corrected | |||
2–5 | 114 | 114 | 0 |
6–11 | 178 | 181 | 1 |
12–15 | 381 | 367 | −4 |
GAMUNEX-C (IV), Adult CL = 101 mL/day, Baseline Uncorrected | |||
2–5 | 20 | 26 | 31 |
6–11 | 44 | 41 | −6 |
12–16 | 84 | 82 | −3 |
Cuvitru (subcutaneous), Adult CL = 150 mL/day, Baseline Uncorrected | |||
2–<5 | 37 | 37 | 1 |
5–<12 | 48 | 59 | 22 |
12–16 y | 103 | 117 | 14 |
Hizentra (subcutaneous), Adult CL = 161 mL/day, Baseline Uncorrected | |||
6–<12 y | 55 | 74 | 35 |
12–<16 y | 119 | 134 | 13 |
Sandoglobulin, Adult CL = 110 mL/day, Baseline Uncorrected | |||
Preterm | 4.2 | 2.1 | −50 |
Gamimune, Adult CL = 110 mL/day, Baseline Uncorrected | |||
250 (term) | 2.8 | 3.1 | 10 |
500 (term) | 4.1 | 3.3 | −18 |
1000 (preterm) | 3.6 | 1.9 | −47 |
Age (Years) | Observed CL | Predicted CL | % Error |
---|---|---|---|
Bivalirudin, Adult CL = 238 mL/min, Percutaneous Coronary Intervention | |||
<30 days | 40 | 9 | −77 |
31 days <2 | 83 | 28 | −66 |
2–<6 | 137 | 86 | −37 |
6–<16 | 245 | 159 | −35 |
Darbepoetin alfa, Adult CL = 112 mL/h, Chronic Kidney Disease | |||
1–17 | 81 | 67 | −17 |
<12 | 55 | 45 | −19 |
>12 | 49 | 64 | 30 |
Erythropoietin, Adult CL = 361 mL/h, End Stage Renal Failure | |||
9–12 | 263 | 177 | −33 |
>12–16 | 429 | 242 | −44 |
Interleukin 11, Adult CL = 26 L/h, Solid Tumors or Lymphoma | |||
>1–3 | 4.9 | 4.1 | −17 |
>3–<13 | 13.2 | 12.5 | −5 |
>13–<17 | 23.8 | 20.4 | −14 |
Drotrecogin alfa (activated), Adult CL = 38 L/h, Chronic Kidney Disease | |||
<1 year | 3.4 | 3.3 | −4 |
1–8 year | 12 | 18 | 46 |
Glulisine, SC, Adult CL = 53 mL/h, Type 1 Diabetes | |||
5–11 year | 45 | 35 | −23 |
11–17 year | 65 | 50 | −24 |
Regular Human Insulin, SC, Adult CL = 55 mL/h, Type 1 Diabetes | |||
5–11 year | 65 | 36 | −44 |
11–17 year | 63 | 51 | −18 |
Growth Hormone (LB03002), Adult CL = 25 L/h, GH Deficiency | |||
7 years | 9.1 | 11.5 | 27 |
Enfuvirtide, Adult CL = 1310 mL/h, HIV-1-Infected, SC | |||
>5–<12 year | 666 | 640 | −3 |
>12–<17 year | 970 | 960 | −1 |
Description | Monoclonal | Polyclonal | Non-Antibodies |
---|---|---|---|
# of drugs | 13 | 7 | 9 |
# of observations | 33 | 21 | 21 |
≤30% PE | 30 (91%) | 17 (81%) | 13 (62%) |
≤50% PE | 32 (97%) | 21 (100%) | 19 (90%) |
≥50% PE | 1 (3%) | 0 (0%) | 2 (10%) |
# All drugs | 29 | ||
# of observations | 75 | ||
≤30% PE | 60 (80%) | ||
≤50% PE | 72 (96%) | ||
≥50% PE | 3 (4%) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, I. Prediction of Clearance of Monoclonal and Polyclonal Antibodies and Non-Antibody Proteins in Children: Application of Allometric Scaling. Antibodies 2020, 9, 40. https://doi.org/10.3390/antib9030040
Mahmood I. Prediction of Clearance of Monoclonal and Polyclonal Antibodies and Non-Antibody Proteins in Children: Application of Allometric Scaling. Antibodies. 2020; 9(3):40. https://doi.org/10.3390/antib9030040
Chicago/Turabian StyleMahmood, Iftekhar. 2020. "Prediction of Clearance of Monoclonal and Polyclonal Antibodies and Non-Antibody Proteins in Children: Application of Allometric Scaling" Antibodies 9, no. 3: 40. https://doi.org/10.3390/antib9030040
APA StyleMahmood, I. (2020). Prediction of Clearance of Monoclonal and Polyclonal Antibodies and Non-Antibody Proteins in Children: Application of Allometric Scaling. Antibodies, 9(3), 40. https://doi.org/10.3390/antib9030040