Special Issue: Nanobody
Conflicts of Interest
References
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hamers, C.; Songa, E.B.; Bendahman, N.; Hamers, R. Naturally occurring antibodies devoid of light chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef]
- Moutel, S.; Bery, N.; Bernard, V.; Keller, L.; Lemesre, E.; de Marco, A.; Ligat, L.; Rain, J.C.; Favre, G.; Olichon, A.; et al. Nali-h1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife 2016, 5, e16228. [Google Scholar] [CrossRef]
- Pardon, E.; Laeremans, T.; Triest, S.; Rasmussen, S.G.; Wohlkonig, A.; Ruf, A.; Muyldermans, S.; Hol, W.G.; Kobilka, B.K.; Steyaert, J. A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 2014, 9, 674–693. [Google Scholar] [CrossRef]
- Muyldermans, S. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef] [Green Version]
- Steeland, S.; Vandenbroucke, R.E.; Libert, C. Nanobodies as therapeutics: Big opportunities for small antibodies. Drug Discov. Today 2016, 21, 1076–1113. [Google Scholar] [CrossRef]
- Morrison, C. Nanobody approval gives domain antibodies a boost. Nat. Rev. Drug Discov. 2019, 18, 485–487. [Google Scholar] [CrossRef]
- Longhin, E.; Gronberg, C.; Hu, Q.; Duelli, A.S.; Andersen, K.R.; Laursen, N.S.; Gourdon, P. Isolation and characterization of nanobodies against a zinc-transporting p-type atpase. Antibodies (Basel) 2018, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.L.; Shriver-Lake, L.C.; Zabetakis, D.; Goldman, E.R.; Anderson, G.P. Selection of single-domain antibodies towards western equine encephalitis virus. Antibodies (Basel) 2018, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Ramage, W.; Gaiotto, T.; Ball, C.; Risley, P.; Carnell, G.W.; Temperton, N.; Cheung, C.Y.; Engelhardt, O.G.; Hufton, S.E. Cross-reactive and lineage-specific single domain antibodies against influenza b hemagglutinin. Antibodies (Basel) 2019, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Strokappe, N.M.; Hock, M.; Rutten, L.; McCoy, L.E.; Back, J.W.; Caillat, C.; Haffke, M.; Weiss, R.A.; Weissenhorn, W.; Verrips, T. Super potent bispecific llama vhh antibodies neutralize hiv via a combination of gp41 and gp120 epitopes. Antibodies (Basel) 2019, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Heukers, R.; Mashayekhi, V.; Ramirez-Escudero, M.; de Haard, H.; Verrips, T.C.; van Bergen En Henegouwen, P.M.P.; Oliveira, S. Vhh-photosensitizer conjugates for targeted photodynamic therapy of met-overexpressing tumor cells. Antibodies (Basel) 2019, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Angalakurthi, S.K.; Vance, D.J.; Rong, Y.; Nguyen, C.M.T.; Rudolph, M.J.; Volkin, D.; Middaugh, C.R.; Weis, D.D.; Mantis, N.J. A collection of single-domain antibodies that crowd ricin toxin’s active site. Antibodies (Basel) 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.P.; Shriver-Lake, L.C.; Walper, S.A.; Ashford, L.; Zabetakis, D.; Liu, J.L.; Breger, J.C.; Brozozog Lee, P.A.; Goldman, E.R. Genetic fusion of an anti-bcla single-domain antibody with beta galactosidase. Antibodies (Basel) 2018, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Keller, L.; Bery, N.; Tardy, C.; Ligat, L.; Favre, G.; Rabbitts, T.H.; Olichon, A. Selection and characterization of a nanobody biosensor of gtp-bound rho activities. Antibodies (Basel) 2019, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Keller, B.M.; Maier, J.; Weldle, M.; Segan, S.; Traenkle, B.; Rothbauer, U. A strategy to optimize the generation of stable chromobody cell lines for visualization and quantification of endogenous proteins in living cells. Antibodies (Basel) 2019, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Gorshkova, E.N.; Efimov, G.A.; Ermakova, K.D.; Vasilenko, E.A.; Yuzhakova, D.V.; Shirmanova, M.V.; Mokhonov, V.V.; Tillib, S.V.; Nedospasov, S.A.; Astrakhantseva, I.V. Properties of fluorescent far-red anti-tnf nanobodies. Antibodies (Basel) 2018, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, G.; Matsuda, S.; Vigano, M.A.; Affolter, M. Using nanobodies to study protein function in developing organisms. Antibodies (Basel) 2019, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- De Vlieger, D.; Ballegeer, M.; Rossey, I.; Schepens, B.; Saelens, X. Single-domain antibodies and their formatting to combat viral infections. Antibodies (Basel) 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Jank, L.; Pinto-Espinoza, C.; Duan, Y.; Koch-Nolte, F.; Magnus, T.; Rissiek, B. Current approaches and future perspectives for nanobodies in stroke diagnostic and therapy. Antibodies (Basel) 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Belanger, K.; Iqbal, U.; Tanha, J.; MacKenzie, R.; Moreno, M.; Stanimirovic, D. Single-domain antibodies as therapeutic and imaging agents for the treatment of cns diseases. Antibodies (Basel) 2019, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Debie, P.; Devoogdt, N.; Hernot, S. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. Antibodies (Basel) 2019, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanier, T.; Chames, P. Nanobody engineering: Toward next generation immunotherapies and immunoimaging of cancer. Antibodies (Basel) 2019, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chames, P.; Rothbauer, U. Special Issue: Nanobody. Antibodies 2020, 9, 6. https://doi.org/10.3390/antib9010006
Chames P, Rothbauer U. Special Issue: Nanobody. Antibodies. 2020; 9(1):6. https://doi.org/10.3390/antib9010006
Chicago/Turabian StyleChames, Patrick, and Ulrich Rothbauer. 2020. "Special Issue: Nanobody" Antibodies 9, no. 1: 6. https://doi.org/10.3390/antib9010006
APA StyleChames, P., & Rothbauer, U. (2020). Special Issue: Nanobody. Antibodies, 9(1), 6. https://doi.org/10.3390/antib9010006