From Donor to Recipient: Current Questions Relating to Humoral Alloimmunization
Abstract
:1. Introduction
Immunosuppression
Regimen | Immunization Rate | Main AlloAb Specificity | HLA Expression | |
---|---|---|---|---|
RBC | No | Moderate | RBC Ag RH1 and KEL1 | No HLA * |
Low or very low | Other RBC Ags | |||
Platelets | No | Moderate | HLA Class I /II | HLA Class I * |
Very low | HPA | |||
Renal transplantation | No | Highly frequent | HLA Class I /II | HLA Class I/II |
Yes | Moderate | |||
Heterologous immunization | No | Nearly 100% | Large | No |
2. The Immunogenicity of Foreign Ags
3. Alloantibodies in Transfusion
4. Donor and Blood Product Related Factors in Transfusion
4.1. Inflammation and Alloimmunization
4.2. Residual Leukocytes and Alloimmunization
5. Recipient Related Factors in Transfusion
5.1. Genetic Risk Factors
5.2. Environmental Risk Factors
5.3. Recipients’ Tolerance to AlloAgs
6. The Pregnancy Example
7. Antibodies in Transplantation
7.1. Donor-Specific Abs and Rejection
7.2. Non-HLA Abs
8. Regulatory Immune Cells in Transplantation
8.1. Adaptive Immunity
8.2. Innate Immune System
9. Operational Tolerance (OT) in Transplantation
10. PERSPECTIVES: Coming Soon the “Regulatory Plasma Cells” (Preg)?
11. Concluding Remarks
Abbreviations
Ab | antibody |
Ag | antigen |
APC | antigen presenting cell |
BC | blood component |
Breg | regulatory B cell |
Treg | regulatory T cell |
GVHD | graft versus host disease |
HLA | human leukocyte Ag |
HPA | human platelet Ag |
MHC | major histocompatibility complex |
NHFTR | non hemolytic febrile transfusion reaction |
NIMA | non inherited maternal Ag |
PC | platelet component |
RBC | red blood cells |
RBCC | red blood cell component |
TRALI | transfusion related acute lung injury |
Conflicts of Interest
References
- Urbaniak, S.J. Alloimmunity to RhD in humans. Transfus. Clin. Biol. 2006, 13, 19–22. [Google Scholar] [CrossRef]
- Yazer, M.H.; Triulzi, D.J. Detection of anti-D in D- recipients transfused with D+ red blood cells. Transfusion 2007, 47, 2197–2201. [Google Scholar] [CrossRef]
- Schonewille, H.; Brand, A. Alloimmunization to red blood cell antigens after universal leucodepletion. A regional multicentre retrospective study. Br. J. Haematol. 2005, 129, 151–156. [Google Scholar] [CrossRef]
- Kao, K.J.; Cook, D.J.; Scornik, J.C. Quantitative analysis of platelet surface HLA by W6/32 anti-HLA monoclonal antibody. Blood 1986, 68, 627–632. [Google Scholar]
- Lalezari, P.; Driscoll, A.M. Ability of thrombocytes to acquire HLA specificity from plasma. Blood 1982, 59, 167–170. [Google Scholar]
- Gouttefangeas, C.; Diehl, M.; Keilholz, W.; Hornlein, R.F.; Stevanovic, S.; Rammensee, H.G. Thrombocyte HLA molecules retain nonrenewable endogenous peptides of megakaryocyte lineage and do not stimulate direct allocytotoxicity in vitro. Blood 2000, 95, 3168–3175. [Google Scholar]
- Kiefel, V.; Konig, C.; Kroll, H.; Santoso, S. Platelet alloantibodies in transfused patients. Transfusion 2001, 41, 766–770. [Google Scholar] [CrossRef]
- Santoro, C.; Rago, A.; Biondo, F.; Conti, L.; Pulcinelli, F.; Laurenti, L.; Perrone, M.P.; Baldacci, E.; Leporace, A.; Mazzucconi, M.G. Prevalence of allo-immunization anti-HLA and anti-integrin alphaIIbbeta3 in Glanzmann Thromboasthenia patients. Haemophilia 2010, 16, 805–812. [Google Scholar] [CrossRef]
- Poon, M.C.; D’Oiron, R.; Von Depka, M.; Khair, K.; Negrier, C.; Karafoulidou, A.; Huth-Kuehne, A.; Morfini, M. Prophylactic and therapeutic recombinant factor VIIa administration to patients with Glanzmann’s thrombasthenia: Results of an international survey. J. Thromb. Haemost. 2004, 2, 1096–1103. [Google Scholar] [CrossRef]
- Picard, C.; Frassati, C.; Basire, A.; Buhler, S.; Galicher, V.; Ferrera, V.; Reviron, D.; Zappitelli, J.P.; Bailly, P.; Chiaroni, J. Positive association of DRB1 04 and DRB1 15 alleles with Fya immunization in a Southern European population. Transfusion 2009, 49, 2412–2417. [Google Scholar] [CrossRef]
- Noizat-Pirenne, F.; Tournamille, C.; Bierling, P.; Roudot-Thoraval, F.; Le Pennec, P.Y.; Rouger, P.; Ansart-Pirenne, H. Relative immunogenicity of Fya and K antigens in a Caucasian population, based on HLA class II restriction analysis. Transfusion 2006, 46, 1328–1333. [Google Scholar] [CrossRef]
- Reviron, D.; Dettori, I.; Ferrera, V.; Legrand, D.; Touinssi, M.; Mercier, P.; de Micco, P.; Chiaroni, J. HLA-DRB1 alleles and Jk(a) immunization. Transfusion 2005, 45, 956–959. [Google Scholar] [CrossRef]
- Chiaroni, J.; Dettori, I.; Ferrera, V.; Legrand, D.; Touinssi, M.; Mercier, P.; de Micco, P.; Reviron, D. HLA-DRB1 polymorphism is associated with Kell immunisation. Br. J. Haematol. 2006, 132, 374–378. [Google Scholar] [CrossRef]
- Kaplan, C. Foetal and neonatal alloimmune thrombocytopaenia. Orphanet J. Rare Dis. 2006, 1, 1–6. [Google Scholar] [CrossRef]
- Duquesnoy, R.J. The antibody response to an HLA mismatch: A model for nonself-self discrimination in relation to HLA epitope immunogenicity. Int. J. Immunogenet. 2012, 39, 1–9. [Google Scholar] [CrossRef]
- Morales-Buenrostro, L.E.; Terasaki, P.I.; Marino-Vazquez, L.A.; Lee, J.H.; El-Awar, N.; Alberu, J. “Natural” human leukocyte antigen antibodies found in nonalloimmunized healthy males. Transplantation 2008, 86, 1111–1115. [Google Scholar] [CrossRef]
- Hendrickson, J.E.; Desmarets, M.; Deshpande, S.S.; Chadwick, T.E.; Hillyer, C.D.; Roback, J.D.; Zimring, J.C. Recipient inflammation affects the frequency and magnitude of immunization to transfused red blood cells. Transfusion 2006, 46, 1526–1536. [Google Scholar] [CrossRef]
- Cognasse, F.; Boussoulade, F.; Chavarin, P.; Acquart, S.; Fabrigli, P.; Lamy, B.; Garraud, O. Release of potential immunomodulatory factors during platelet storage. Transfusion 2006, 46, 1184–1189. [Google Scholar] [CrossRef]
- Mai, J.; Virtue, A.; Shen, J.; Wang, H.; Yang, X.F. An evolving new paradigm: Endothelial cells –conditional innate immune cells. J. Hematol. Oncol. 2013, 6, 61. [Google Scholar] [CrossRef]
- Cognasse, F.; Hamzeh-Cognasse, H.; Lafarge, S.; Chavarin, P.; Cogne, M.; Richard, Y.; Garraud, O. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp. Hematol. 2007, 35, 1376–1387. [Google Scholar] [CrossRef]
- Hod, E.A.; Spitalnik, S.L. Stored red blood cell transfusions: Iron, inflammation, immunity, and infection. Transfus. Clin. Biol. 2012, 19, 84–89. [Google Scholar] [CrossRef]
- Zalpuri, S.; Schonewille, H.; Middelburg, R.; van de Watering, L.; de Vooght, K.; Zimring, J.; van der Bom, J.G.; Zwaginga, J.J. Effect of storage of red blood cells on alloimmunization. Transfusion 2013, 53, 2795–2800. [Google Scholar] [CrossRef]
- Seftel, M.D.; Growe, G.H.; Petraszko, T.; Benny, W.B.; Le, A.; Lee, C.Y.; Spinelli, J.J.; Sutherland, H.J.; Tsang, P.; Hogge, D.E. Universal prestorage leukoreduction in Canada decreases platelet alloimmunization and refractoriness. Blood 2004, 103, 333–339. [Google Scholar] [CrossRef]
- van de Watering, L.; Hermans, J.; Witvliet, M.; Versteegh, M.; Brand, A. HLA and RBC immunization after filtered and buffy coat-depleted blood transfusion in cardiac surgery: A randomized controlled trial. Transfusion 2003, 43, 765–771. [Google Scholar] [CrossRef]
- Slichter, S.J. Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. N. Engl. J. Med. 1997, 337, 1861–1869. [Google Scholar] [CrossRef]
- Marschner, S.; Fast, L.D.; Baldwin, W.M., 3rd; Slichter, S.J.; Goodrich, R.P. White blood cell inactivation after treatment with riboflavin and ultraviolet light. Transfusion 2010, 50, 2489–2498. [Google Scholar] [CrossRef]
- Bilgin, Y.M.; van de Watering, L.M.; Brand, A. Clinical effects of leucoreduction of blood transfusions. Neth. J. Med. 2011, 69, 441–450. [Google Scholar]
- Claas, F.H.; Smeenk, R.J.; Schmidt, R.; van Steenbrugge, G.J.; Eernisse, J.G. Alloimmunization against the MHC antigens after platelet transfusions is due to contaminating leukocytes in the platelet suspension. Exp. Hematol. 1981, 9, 84–89. [Google Scholar]
- Semple, J.W.; Speck, E.R.; Cosgrave, D.; Lazarus, A.H.; Blanchette, V.S.; Freedman, J. Extreme leukoreduction of major histocompatibility complex class II positive B cells enhances allogeneic platelet immunity. Blood 1999, 93, 713–720. [Google Scholar]
- Gilson, C.R.; Cadwell, C.M.; Smith, N.H.; Hendrickson, J.E.; Zimring, J.C. MHC II on transfused murine blood is not required for alloimmunization against MHC I. Vox Sang. 2010, 99, 369–374. [Google Scholar] [CrossRef]
- Semple, J.W.; Speck, E.R.; Milev, Y.P.; Blanchette, V.; Freedman, J. Indirect allorecognition of platelets by T helper cells during platelet transfusions correlates with anti-major histocompatibility complex antibody and cytotoxic T lymphocyte formation. Blood 1995, 86, 805–812. [Google Scholar]
- Blajchman, M.A. Transfusion-associated immunomodulation and universal white cell reduction: Are we putting the cart before the horse? Transfusion 1999, 39, 665–670. [Google Scholar] [CrossRef]
- Aslam, R.; Speck, E.R.; Kim, M.; Freedman, J.; Semple, J.W. Transfusion-related immunomodulation by platelets is dependent on their expression of MHC Class I molecules and is independent of white cells. Transfusion 2008, 48, 1778–1786. [Google Scholar] [CrossRef]
- Sayeh, E.; Sterling, K.; Speck, E.; Freedman, J.; Semple, J.W. IgG antiplatelet immunity is dependent on an early innate natural killer cell-derived interferon-gamma response that is regulated by CD8+ T cells. Blood 2004, 103, 2705–2709. [Google Scholar] [CrossRef]
- Vamvakas, E.C.; Blajchman, M.A. Transfusion-related immunomodulation (TRIM): An update. Blood Rev. 2007, 21, 327–348. [Google Scholar] [CrossRef]
- van Twuyver, E.; Mooijaart, R.J.; ten Berge, I.J.; van der Horst, A.R.; Wilmink, J.M.; Kast, W.M.; Melief, C.J.; de Waal, L.P. Pretransplantation blood transfusion revisited. N. Engl. J. Med. 1991, 325, 1210–1213. [Google Scholar] [CrossRef]
- Hendrickson, J.E.; Chadwick, T.E.; Roback, J.D.; Hillyer, C.D.; Zimring, J.C. Inflammation enhances consumption and presentation of transfused RBC antigens by dendritic cells. Blood 2007, 110, 2736–2743. [Google Scholar] [CrossRef]
- Smith, N.H.; Hod, E.A.; Spitalnik, S.L.; Zimring, J.C.; Hendrickson, J.E. Transfusion in the absence of inflammation induces antigen-specific tolerance to murine RBCs. Blood 2012, 119, 1566–1569. [Google Scholar] [CrossRef]
- Zimring, J.C.; Stowell, S.R.; Johnsen, J.M.; Hendrickson, J.E. Effects of genetic, epigenetic, and environmental factors on alloimmunization to transfused antigens: Current paradigms and future considerations. Transfus. Clin. Biol. 2012, 19, 125–131. [Google Scholar] [CrossRef]
- Papay, P.; Hackner, K.; Vogelsang, H.; Novacek, G.; Primas, C.; Reinisch, W.; Eser, A.; Mikulits, A.; Mayr, W.R.; Kormoczi, G.F. High risk of transfusion-induced alloimmunization of patients with inflammatory bowel disease. Am. J. Med. 2012, 125, 717.e1–717.e8. [Google Scholar]
- Tatari-Calderone, Z.; Minniti, C.P.; Kratovil, T.; Stojakovic, M.; Vollmer, A.; Barjaktarevic, I.; Zhang, E.; Hoang, A.; Luban, N.L.; Vukmanovic, S. rs660 polymorphism in Ro52 (SSA1; TRIM21) is a marker for age-dependent tolerance induction and efficiency of alloimmunization in sickle cell disease. Mol. Immunol. 2009, 47, 64–70. [Google Scholar] [CrossRef]
- Tatari-Calderone, Z.; Tamouza, R.; Le Bouder, G.P.; Dewan, R.; Luban, N.L.; Lasserre, J.; Maury, J.; Lionnet, F.; Krishnamoorthy, R.; Girot, R.; et al. The association of CD81 polymorphisms with alloimmunization in sickle cell disease. Clin. Dev. Immunol. 2013, 2013, 937846. [Google Scholar]
- Yazer, M.H.; Triulzi, D.J.; Shaz, B.; Kraus, T.; Zimring, J.C. Does a febrile reaction to platelets predispose recipients to red blood cell alloimmunization? Transfusion 2009, 49, 1070–1075. [Google Scholar] [CrossRef]
- Aygun, B.; Padmanabhan, S.; Paley, C.; Chandrasekaran, V. Clinical significance of RBC alloantibodies and autoantibodies in sickle cell patients who received transfusions. Transfusion 2002, 42, 37–43. [Google Scholar] [CrossRef]
- Yazdanbakhsh, K.; Ware, R.E.; Noizat-Pirenne, F. Red blood cell alloimmunization in sickle cell disease: Pathophysiology, risk factors, and transfusion management. Blood 2012, 120, 528–537. [Google Scholar] [CrossRef]
- Bao, W.; Yu, J.; Heck, S.; Yazdanbakhsh, K. Regulatory T-cell status in red cell alloimmunized responder and nonresponder mice. Blood 2009, 113, 5624–5627. [Google Scholar] [CrossRef]
- Yu, J.; Heck, S.; Yazdanbakhsh, K. Prevention of red cell alloimmunization by CD25 regulatory T cells in mouse models. Am. J. Hematol. 2007, 82, 691–696. [Google Scholar] [CrossRef]
- Bao, W.; Zhong, H.; Manwani, D.; Vasovic, L.; Uehlinger, J.; Lee, M.T.; Sheth, S.; Shi, P.; Yazdanbakhsh, K. Regulatory B-cell compartment in transfused alloimmunized and non-alloimmunized patients with sickle cell disease. Am. J. Hematol. 2013, 88, 736–740. [Google Scholar] [CrossRef]
- Bao, W.; Zhong, H.; Li, X.; Lee, M.T.; Schwartz, J.; Sheth, S.; Yazdanbakhsh, K. Immune regulation in chronically transfused allo-antibody responder and nonresponder patients with sickle cell disease and beta-thalassemia major. Am. J. Hematol. 2011, 86, 1001–1006. [Google Scholar] [CrossRef]
- Aslam, R.; Hu, Y.; Gebremeskel, S.; Segel, G.B.; Speck, E.R.; Guo, L.; Kim, M.; Ni, H.; Freedman, J.; Semple, J.W. Thymic retention of CD4+CD25+FoxP3+ T regulatory cells is associated with their peripheral deficiency and thrombocytopenia in a murine model of immune thrombocytopenia. Blood 2012, 120, 2127–2132. [Google Scholar] [CrossRef]
- Castellino, S.M.; Combs, M.R.; Zimmerman, S.A.; Issitt, P.D.; Ware, R.E. Erythrocyte autoantibodies in paediatric patients with sickle cell disease receiving transfusion therapy: Frequency, characteristics and significance. Br. J. Haematol. 1999, 104, 189–194. [Google Scholar] [CrossRef]
- Taaning, E.; Tonnesen, F. Pan-reactive platelet antibodies in post-transfusion purpura. Vox Sang. 1999, 76, 120–123. [Google Scholar] [CrossRef]
- Lopes, L.B.; Fabron-Jr, A.; Chiba, A.K.; Ruiz, M.O.; Bordin, J.O. Impact of using different laboratory assays to detect human leukocyte antigen antibodies in female blood donors. Transfusion 2010, 50, 902–908. [Google Scholar] [CrossRef]
- Dreyfus, M.; Kaplan, C.; Verdy, E.; Schlegel, N.; Durand-Zaleski, I.; Tchernia, G. Frequency of immune thrombocytopenia in newborns: A prospective study. Blood 1997, 89, 4402–4406. [Google Scholar]
- Skogen, B.; Husebekk, A.; Killie, M.K.; Kjeldsen-Kragh, J. Neonatal alloimmune thrombocytopenia is not what it was: A lesson learned from a large prospective screening and intervention program. Scand. J. Immunol. 2009, 70, 531–534. [Google Scholar] [CrossRef]
- Ahlen, M.T.; Husebekk, A.; Killie, M.K.; Kjeldsen-Kragh, J.; Olsson, M.L.; Skogen, B. The development of severe neonatal alloimmune thrombocytopenia due to anti-HPA-1a antibodies is correlated to maternal ABO genotypes. Clin. Dev. Immunol. 2012, 2012, 156867. [Google Scholar]
- Basu, S.; Kaur, R.; Kaur, G. Hemolytic disease of the fetus and newborn: Current trends and perspectives. Asian J. Transfus. Sci. 2011, 5, 3–7. [Google Scholar] [CrossRef]
- Mawas, F.; Wiener, E.; Williamson, L.M.; Rodeck, C.H. Immunoglobulin G subclasses of anti-human platelet antigen 1a in maternal sera: Relation to the severity of neonatal alloimmune thrombocytopenia. Eur. J. Haematol. 1997, 59, 287–292. [Google Scholar]
- Jackman, R.P.; Deng, X.; Bolgiano, D.; Utter, G.H.; Schechterly, C.; Lebedeva, M.; Operskalski, E.; Luban, N.L.; Alter, H.; Busch, M.P.; et al. Leukoreduction and ultraviolet treatment reduce both the magnitude and the duration of the HLA antibody response. Transfusion 2013. [Google Scholar] [CrossRef]
- Kaneku, H. 2012 annual literature review of donor-specific HLA antibodies after organ transplantation. Clin. Transpl. 2012, 207–217. [Google Scholar]
- Loupy, A.; Hill, G.S.; Jordan, S.C. The impact of donor-specific anti-HLA antibodies on late kidney allograft failure. Nat. Rev. Nephrol. 2012, 8, 348–357. [Google Scholar] [CrossRef]
- Scornik, J.C.; Guerra, G.; Schold, J.D.; Srinivas, T.R.; Dragun, D.; Meier-Kriesche, H.U. Value of posttransplant antibody tests in the evaluation of patients with renal graft dysfunction. Am. J. Transplant. 2007, 7, 1808–1814. [Google Scholar] [CrossRef]
- Higgins, R.; Hathaway, M.; Lowe, D.; Lam, F.; Kashi, H.; Tan, L.C.; Imray, C.; Fletcher, S.; Zehnder, D.; Chen, K.; et al. Blood levels of donor-specific human leukocyte antigen antibodies after renal transplantation: Resolution of rejection in the presence of circulating donor-specific antibody. Transplantation 2007, 84, 876–884. [Google Scholar] [CrossRef]
- Platt, J.L. Antibodies in transplantation. Discov. Med. 2010, 10, 125–133. [Google Scholar]
- Arnold, M.L.; Heinemann, F.M.; Horn, P.; Ziemann, M.; Lachmann, N.; Muhlbacher, A.; Dick, A.; Ender, A.; Thammanichanond, D.; Fischer, G.F.; et al. 16(th) IHIW: Anti-HLA alloantibodies of the of IgA isotype in re-transplant candidates. Int. J. Immunogenet. 2013, 40, 17–20. [Google Scholar]
- Lowe, D.; Higgins, R.; Zehnder, D.; Briggs, D.C. Significant IgG subclass heterogeneity in HLA-specific antibodies: Implications for pathogenicity, prognosis, and the rejection response. Hum. Immunol. 2013, 74, 666–672. [Google Scholar] [CrossRef]
- Takiguchi, M.; Nishimura, I.; Hayashi, H.; Karakl, S.; Kariyone, A.; Kano, K. The structure and expression of genes encoding serologically undetected HLA-C locus antigens. J. Immunol. 1989, 143, 1372–1378. [Google Scholar]
- Jolly, E.C.; Key, T.; Rasheed, H.; Morgan, H.; Butler, A.; Pritchard, N.; Taylor, C.J.; Clatworthy, M.R. Preformed donor HLA-DP-specific antibodies mediate acute and chronic antibody-mediated rejection following renal transplantation. Am. J. Transplant. 2012, 12, 2845–2848. [Google Scholar] [CrossRef]
- Muro, M.; Sanchez-Bueno, F.; Marin, L.; Torio, A.; Moya-Quiles, M.R.; Minguela, A.; Ramirez, P.; Alemany, J.M.; Miras, M.; Perez-Lopez, M.J.; et al. DQA1 and DQB1 genes polymorphism on acute rejection development in liver transplantation. Transplant. Proc. 2002, 34, 3302–3303. [Google Scholar] [CrossRef]
- Marrari, M.; Duquesnoy, R.J. Detection of donor-specific HLA antibodies before and after removal of a rejected kidney transplant. Transpl. Immunol. 2010, 22, 105–109. [Google Scholar] [CrossRef]
- Kraus, E.S.; Parekh, R.S.; Oberai, P.; Lepley, D.; Segev, D.L.; Bagnasco, S.; Collins, V.; Leffell, M.; Lucas, D.; Rabb, H.; et al. Subclinical rejection in stable positive crossmatch kidney transplant patients: Incidence and correlations. Am. J. Transplant. 2009, 9, 1826–1834. [Google Scholar] [CrossRef]
- Laperrousaz, S.; Tiercy, J.M.; Villard, J.; Ferrari-Lacraz, S. HLA and non-HLA polymorphisms in renal transplantation. Swiss Med. Wkly. 2012, 142, w13668. [Google Scholar]
- Opelz, G. Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet 2005, 365, 1570–1576. [Google Scholar] [CrossRef]
- Terasaki, P.I.; Ozawa, M.; Castro, R. Four-year Follow-up of a Prospective Trial of HLA and MICA Antibodies on Kidney Graft Survival. Am. J. Transplant. 2007, 7, 408–415. [Google Scholar] [CrossRef]
- Sigdel, T.K.; Sarwal, M.M. Moving beyond HLA: A review of nHLA antibodies in organ transplantation. Hum. Immunol. 2013, 74, 1486–1490. [Google Scholar] [CrossRef]
- Porcheray, F.; DeVito, J.; Yeap, B.Y.; Xue, L.; Dargon, I.; Paine, R.; Girouard, T.C.; Saidman, S.L.; Colvin, R.B.; Wong, W.; et al. Chronic humoral rejection of human kidney allografts associates with broad autoantibody responses. Transplantation 2010, 89, 1239–1246. [Google Scholar] [CrossRef]
- Reinsmoen, N.L.; Lai, C.H.; Heidecke, H.; Haas, M.; Cao, K.; Ong, G.; Naim, M.; Wang, Q.; Mirocha, J.; Kahwaji, J.; et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation 2010, 90, 1473–1477. [Google Scholar] [CrossRef]
- Subramanian, V.; Ramachandran, S.; Klein, C.; Wellen, J.R.; Shenoy, S.; Chapman, W.C.; Mohanakumar, T. ABO-incompatible organ transplantation. Int. J. Immunogenet. 2012, 39, 282–290. [Google Scholar] [CrossRef]
- Nadarajah, L.; Ashman, N.; Thuraisingham, R.; Barber, C.; Allard, S.; Green, L. Literature review of passenger lymphocyte syndrome following renal transplantation and two case reports. Am. J. Transplant. 2013, 13, 1594–1600. [Google Scholar] [CrossRef]
- Golshayan, D.; Jiang, S.; Tsang, J.; Garin, M.I.; Mottet, C.; Lechler, R.I. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 2007, 109, 827–835. [Google Scholar] [CrossRef]
- Dons, E.M.; Raimondi, G.; Cooper, D.K.; Thomson, A.W. Induced regulatory T cells: Mechanisms of conversion and suppressive potential. Hum. Immunol. 2012, 73, 328–334. [Google Scholar] [CrossRef]
- Ochando, J.C.; Homma, C.; Yang, Y.; Hidalgo, A.; Garin, A.; Tacke, F.; Angeli, V.; Li, Y.; Boros, P.; Ding, Y.; et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat. Immunol. 2006, 7, 652–662. [Google Scholar] [CrossRef]
- Wood, K.J.; Bushell, A.; Hester, J. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 2012, 12, 417–430. [Google Scholar] [CrossRef]
- Liu, Z.; Tugulea, S.; Cortesini, R.; Lederman, S.; Suciu-Foca, N. Inhibition of CD40 signaling pathway in antigen presenting cells by T suppressor cells. Hum. Immunol. 1999, 60, 568–574. [Google Scholar] [CrossRef]
- Cai, J.; Lee, J.; Jankowska-Gan, E.; Derks, R.; Pool, J.; Mutis, T.; Goulmy, E.; Burlingham, W.J. Minor H antigen HA-1-specific regulator and effector CD8+ T cells, and HA-1 microchimerism, in allograft tolerance. J. Exp. Med. 2004, 199, 1017–1023. [Google Scholar] [CrossRef]
- Roncarolo, M.G.; Gregori, S.; Lucarelli, B.; Ciceri, F.; Bacchetta, R. Clinical tolerance in allogeneic hematopoietic stem cell transplantation. Immunol. Rev. 2011, 241, 145–163. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, L.; Young, K.; DuTemple, B.; Zhang, L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat. Med. 2000, 6, 782–789. [Google Scholar] [CrossRef]
- Jukes, J.P.; Wood, K.J.; Jones, N.D. Natural killer T cells: A bridge to tolerance or a pathway to rejection? Transplantation 2007, 84, 679–681. [Google Scholar] [CrossRef]
- Li, Y.; Koshiba, T.; Yoshizawa, A.; Yonekawa, Y.; Masuda, K.; Ito, A.; Ueda, M.; Mori, T.; Kawamoto, H.; Tanaka, Y.; et al. Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. Am. J. Transplant. 2004, 4, 2118–2125. [Google Scholar] [CrossRef]
- Martinez-Llordella, M.; Puig-Pey, I.; Orlando, G.; Ramoni, M.; Tisone, G.; Rimola, A.; Lerut, J.; Latinne, D.; Margarit, C.; Bilbao, I.; et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am. J. Transplant. 2007, 7, 309–319. [Google Scholar] [CrossRef]
- Yang, J.; Brook, M.O.; Carvalho-Gaspar, M.; Zhang, J.; Ramon, H.E.; Sayegh, M.H.; Wood, K.J.; Turka, L.A.; Jones, N.D. Allograft rejection mediated by memory T cells is resistant to regulation. Proc. Natl. Acad. Sci. USA 2007, 104, 19954–19959. [Google Scholar] [CrossRef]
- Steger, U.; Kingsley, C.I.; Karim, M.; Bushell, A.R.; Wood, K.J. CD25+CD4+ regulatory T cells develop in mice not only during spontaneous acceptance of liver allografts but also after acute allograft rejection. Transplantation 2006, 82, 1202–1209. [Google Scholar] [CrossRef]
- Pallier, A.; Hillion, S.; Danger, R.; Giral, M.; Racape, M.; Degauque, N.; Dugast, E.; Ashton-Chess, J.; Pettre, S.; Lozano, J.J.; et al. Patients with drug-free long-term graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype. Kidney Int. 2010, 78, 503–513. [Google Scholar] [CrossRef]
- Sagoo, P.; Perucha, E.; Sawitzki, B.; Tomiuk, S.; Stephens, D.A.; Miqueu, P.; Chapman, S.; Craciun, L.; Sergeant, R.; Brouard, S.; et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Invest. 2010, 120, 1848–1861. [Google Scholar] [CrossRef]
- Newell, K.A.; Allan, A.; Kirk, A.D.; Gisler, T.D.; Bourcier, K.; Suthanthrian, M.; Burlingham, W.J.; Marks, W.H.; Sanz, I.; Lechler, R.I.; et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Invest. 2010, 120, 1836–1847. [Google Scholar] [CrossRef]
- Coelho, V.; Saitovitch, D.; Kalil, J.; Silva, H.M. Rethinking the multiple roles of B cells in organ transplantation. Curr. Opin. Organ. Transplant. 2013, 18, 13–21. [Google Scholar] [CrossRef]
- Thaunat, O. Pathophysiologic significance of B-cell clusters in chronically rejected grafts. Transplantation 2011, 92, 121–126. [Google Scholar] [CrossRef]
- Lynch, R.J.; Silva, I.A.; Chen, B.J.; Punch, J.D.; Cascalho, M.; Platt, J.L. Cryptic B cell response to renal transplantation. Am. J. Transplant. 2013, 13, 1713–1723. [Google Scholar] [CrossRef]
- Kraus, A.K.; Cippa, P.E.; Gaspert, A.; Chen, J.; Edenhofer, I.; Wuthrich, R.P.; Lindenmeyer, M.; Segerer, S.; Fehr, T. Absence of donor CD40 protects renal allograft epithelium and preserves renal function. Transpl. Int. 2013, 26, 535–544. [Google Scholar] [CrossRef]
- Ripoll, E.; Pluvinet, R.; Torras, J.; Olivar, R.; Vidal, A.; Franquesa, M.; Cassis, L.; Cruzado, J.M.; Bestard, O.; Grinyo, J.M.; et al. In vivo therapeutic efficacy of intra-renal CD40 silencing in a model of humoral acute rejection. Gene Ther. 2011, 18, 945–952. [Google Scholar] [CrossRef]
- Brent, L.; Brown, J.; Medawar, P.B. Skin transplantation immunity in relation to hypersensitivity. Lancet 1958, 2, 561–564. [Google Scholar] [CrossRef]
- Girlanda, R.; Kleiner, D.E.; Duan, Z.; Ford, E.A.; Wright, E.C.; Mannon, R.B.; Kirk, A.D. Monocyte infiltration and kidney allograft dysfunction during acute rejection. Am. J. Transplant. 2008, 8, 600–607. [Google Scholar] [CrossRef]
- Tinckam, K.J.; Djurdjev, O.; Magil, A.B. Glomerular monocytes predict worse outcomes after acute renal allograft rejection independent of C4d status. Kidney Int. 2005, 68, 1866–1874. [Google Scholar] [CrossRef]
- Ulrich, C.; Heine, G.H.; Gerhart, M.K.; Kohler, H.; Girndt, M. Proinflammatory CD14+CD16+ monocytes are associated with subclinical atherosclerosis in renal transplant patients. Am. J. Transplant. 2008, 8, 103–110. [Google Scholar]
- Benoit, M.; Desnues, B.; Mege, J.L. Macrophage polarization in bacterial infections. J. Immunol. 2008, 181, 3733–3739. [Google Scholar]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Rowshani, A.T.; Vereyken, E.J. The role of macrophage lineage cells in kidney graft rejection and survival. Transplantation 2012, 94, 309–318. [Google Scholar] [CrossRef]
- Riquelme, P.; Tomiuk, S.; Kammler, A.; Fandrich, F.; Schlitt, H.J.; Geissler, E.K.; Hutchinson, J.A. IFN-gamma-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol. Ther. 2013, 21, 409–422. [Google Scholar] [CrossRef]
- Broichhausen, C.; Riquelme, P.; Geissler, E.K.; Hutchinson, J.A. Regulatory macrophages as therapeutic targets and therapeutic agents in solid organ transplantation. Curr. Opin. Organ. Transplant. 2012, 17, 332–342. [Google Scholar]
- Benichou, G.; Valujskikh, A.; Heeger, P.S. Contributions of direct and indirect T cell alloreactivity during allograft rejection in mice. J. Immunol. 1999, 162, 352–358. [Google Scholar]
- Gould, D.S.; Auchincloss, H., Jr. Direct and indirect recognition: The role of MHC antigens in graft rejection. Immunol. Today 1999, 20, 77–82. [Google Scholar] [CrossRef]
- Smyth, L.A.; Afzali, B.; Tsang, J.; Lombardi, G.; Lechler, R.I. Intercellular transfer of MHC and immunological molecules: Molecular mechanisms and biological significance. Am. J. Transplant. 2007, 7, 1442–1449. [Google Scholar] [CrossRef]
- Herrera, O.B.; Golshayan, D.; Tibbott, R.; Salcido Ochoa, F.; James, M.J.; Marelli-Berg, F.M.; Lechler, R.I. A novel pathway of alloantigen presentation by dendritic cells. J. Immunol. 2004, 173, 4828–4837. [Google Scholar]
- Dolan, B.P.; Gibbs, K.D., Jr.; Ostrand-Rosenberg, S. Tumor-specific CD4+ T cells are activated by “cross-dressed” dendritic cells presenting peptide-MHC class II complexes acquired from cell-based cancer vaccines. J. Immunol. 2006, 176, 1447–1455. [Google Scholar]
- Ezzelarab, M.; Thomson, A.W. Tolerogenic dendritic cells and their role in transplantation. Semin. Immunol. 2011, 23, 252–263. [Google Scholar] [CrossRef]
- Brouard, S.; Pallier, A.; Renaudin, K.; Foucher, Y.; Danger, R.; Devys, A.; Cesbron, A.; Guillot-Guegen, C.; Ashton-Chess, J.; Le Roux, S.; et al. The natural history of clinical operational tolerance after kidney transplantation through twenty-seven cases. Am. J. Transplant. 2012, 12, 3296–3307. [Google Scholar] [CrossRef] [Green Version]
- Tryphonopoulos, P.; Ruiz, P.; Weppler, D.; Nishida, S.; Levi, D.M.; Moon, J.; Tekin, A.; Velez, M.; Neuman, D.R.; Island, E.; et al. Long-term follow-up of 23 operational tolerant liver transplant recipients. Transplantation 2010, 90, 1556–1561. [Google Scholar] [CrossRef]
- Roussey-Kesler, G.; Giral, M.; Moreau, A.; Subra, J.F.; Legendre, C.; Noel, C.; Pillebout, E.; Brouard, S.; Soulillou, J.P. Clinical operational tolerance after kidney transplantation. Am. J. Transplant. 2006, 6, 736–746. [Google Scholar] [CrossRef]
- Heidt, S.; Wood, K.J. Biomarkers of operational tolerance in solid organ transplantation. Expert Opin. Med. Diagn. 2012, 6, 281–293. [Google Scholar] [CrossRef]
- Thakkinstian, A.; Dmitrienko, S.; Gerbase-Delima, M.; McDaniel, D.O.; Inigo, P.; Chow, K.M.; McEvoy, M.; Ingsathit, A.; Trevillian, P.; Barber, W.H.; et al. Association between cytokine gene polymorphisms and outcomes in renal transplantation: A meta-analysis of individual patient data. Nephrol. Dial. Transplant. 2008, 23, 3017–3023. [Google Scholar] [CrossRef]
- Burlingham, W.J.; Benichou, G. Bidirectional alloreactivity: A proposed microchimerism-based solution to the NIMA paradox. Chimerism 2012, 3, 29–36. [Google Scholar] [CrossRef]
- Tsurufuji, M.; Ishiguro, K.; Shinomiya, T.; Uchida, T.; Kamada, N. Immunosuppressive activity of serum from liver-grafted rats: In vitro specific inhibition of mixed lymphocyte reactivity by antibodies against class II RT1 alloantigens. Immunology 1987, 61, 421–428. [Google Scholar]
- Nakano, T.; Goto, S.; Lai, C.Y.; Hsu, L.W.; Kao, Y.H.; Lin, Y.C.; Kawamoto, S.; Chiang, K.C.; Ohmori, N.; Goto, T.; et al. Experimental and clinical significance of antinuclear antibodies in liver transplantation. Transplantation 2007, 83, 1122–1125. [Google Scholar] [CrossRef]
- Nakano, T.; Kawamoto, S.; Lai, C.-Y.; Sasaki, T.; Aki, T.; Shigeta, S.; Goto, T.; Sato, S.; Goto, S.; Chen, C.-L.; et al. Liver transplantation-induced antihistone H1 autoantibodies suppress mixed lymphocyte reaction. Transplantation 2004, 77, 1595–1603. [Google Scholar] [CrossRef]
- Nakano, T.; Kawamoto, S.; Lai, C.Y.; Hsu, L.W.; Lin, Y.C.; Sasaki, T.; Aki, T.; Shigeta, S.; Goto, T.; Ohmori, N.; et al. Characterization of immunosuppressive factors expressed in serum by rat tolerogenic liver transplantation. Transplant. Proc. 2005, 37, 80–81. [Google Scholar] [CrossRef]
- Collin, M.; Ehlers, M. The carbohydrate switch between pathogenic and immunosuppressive antigen-specific antibodies. Exp. Dermatol. 2013, 22, 511–514. [Google Scholar] [CrossRef]
- Schwab, I.; Nimmerjahn, F. Intravenous immunoglobulin therapy: How does IgG modulate the immune system? Nat. Rev. Immunol. 2013, 13, 176–189. [Google Scholar] [CrossRef]
- Semple, J.W. gamma -Globulins prepared from sera of multiparous women bind anti-HLA antibodies and inhibit an established in vivo human alloimmune response. Blood 2002, 100, 1055–1059. [Google Scholar] [CrossRef]
- Oefner, C.M.; Winkler, A.; Hess, C.; Lorenz, A.K.; Holecska, V.; Huxdorf, M.; Schommartz, T.; Petzold, D.; Bitterling, J.; Schoen, A.-L.; et al. Tolerance induction with T cell–dependent protein antigens induces regulatory sialylated IgGs. J. Allergy Clin. Immunol. 2012, 129, 1647–1655. [Google Scholar] [CrossRef]
- Brouard, S.; Mansfield, E.; Braud, C.; Li, L.; Giral, M.; Hsieh, S.C.; Baeten, D.; Zhang, M.; Ashton-Chess, J.; Braudeau, C.; et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc. Natl. Acad. Sci. USA 2007, 104, 15448–15453. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Prigent, A.; Maillard, N.; Absi, L.; Aloui, C.; Cognasse, F.; Laradi, S.; Mariat, C.; Garraud, O. From Donor to Recipient: Current Questions Relating to Humoral Alloimmunization. Antibodies 2014, 3, 130-152. https://doi.org/10.3390/antib3010130
Prigent A, Maillard N, Absi L, Aloui C, Cognasse F, Laradi S, Mariat C, Garraud O. From Donor to Recipient: Current Questions Relating to Humoral Alloimmunization. Antibodies. 2014; 3(1):130-152. https://doi.org/10.3390/antib3010130
Chicago/Turabian StylePrigent, Antoine, Nicolas Maillard, Léna Absi, Chaker Aloui, Fabrice Cognasse, Sandrine Laradi, Christophe Mariat, and Olivier Garraud. 2014. "From Donor to Recipient: Current Questions Relating to Humoral Alloimmunization" Antibodies 3, no. 1: 130-152. https://doi.org/10.3390/antib3010130
APA StylePrigent, A., Maillard, N., Absi, L., Aloui, C., Cognasse, F., Laradi, S., Mariat, C., & Garraud, O. (2014). From Donor to Recipient: Current Questions Relating to Humoral Alloimmunization. Antibodies, 3(1), 130-152. https://doi.org/10.3390/antib3010130