Rabbit-Derived Antithymocyte Globulin-Associated Perioperative Anaphylaxis in Renal Transplantation: A Multidisciplinary Perspective on Pathophysiology, Clinical Presentation, and Management
Abstract
1. Introduction
2. Pharmacology
2.1. Manufacturing
2.2. Clinical Profile Based on the Type of Antithymocyte Globulins
2.3. Mechanism of Action of rATG
- T cells: Polyclonal composition enables broad targeting of T-cell surface markers, such as CD2, CD4, CD8, and TCR. Depletion of T cell levels occurs by complement-mediated lysis, apoptosis induction, opsonization, and phagocytosis. This effect is not limited to peripheral lymphocytes but also involves secondary lymphoid tissue [21].
- B cells: Although primarily a T-cell depleting agent, rATG also induces B-cell apoptosis by cross-linking surface receptors such as CD30, CD95, and CD80. The Fab fragment of the antibody plays a significant role in mediating this apoptotic process. Other mechanisms include caspase-dependent apoptosis, cathepsin B-mediated pathways, and lysosomal cysteine protease pathways [22].
- Natural killer (NK) cells: The administration of rATG leads to profound suppression of NK cells and their cytotoxic activity, occurring at significantly lower doses compared to those required to affect other immune cell populations [23]. This suppression is mediated primarily through the binding of the Fc portion of rATG to the low-affinity IgG receptor CD16 (FcγRIII) on CD56dim NK cells. Engagement of CD16 results in (i) down-modulation of CD16 surface expression, (ii) induction of apoptosis and necrosis at low antibody concentrations (as little as 0.1 µg/mL), and (iii) functional impairment, including reduced degranulation, interferon-γ production, and cytotoxicity against target cells. These effects are largely restricted to the CD56dim NK subset, which is the principal effector population for cytotoxicity [23].
- Plasma cells: Plasma cell levels also decrease, which could be attributed to changes in T-cell subset (depletion of T-follicular helper cells) [24].
2.4. Dosage and Administration
2.5. Side-Effects of rATG
3. Rabbit-Derived Antithymocyte Globulin-Associated Anaphylaxis: Pathophysiology and Clinical Presentation
3.1. Diagnostic Criteria
3.2. Mechanisms of Anaphylaxis
3.3. Risk Factors for Anaphylaxis
3.4. Clinical Manifestations
4. Management of rATG-Associated Anaphylaxis
4.1. Differentiating Anaphylaxis from Other Intraoperative Emergencies
4.2. Other Clinical Syndromes to Consider in Differential Diagnosis of rATG-Associated Perioperative Anaphylaxis
4.2.1. Cytokine Release Syndrome
4.2.2. Non-IgE Mediated Anaphylactoid Reactions
4.2.3. Latex Allergy and Hypersensitivity to Other Drugs
4.3. Treatment Protocol
4.4. Proposed Management Algorithm
4.5. Prevention of Secondary Phase of Anaphylaxis
5. Post-Stabilization Decision-Making
6. Diagnostic Workup for Anaphylaxis
6.1. Serum Histamine Levels
6.2. Serum Tryptase Levels
6.3. Urinary Methylhistamine Levels
6.4. Skin Prick Testing
6.5. Rabbit-Specific IgE Testing
7. Proceeding with Re-Transplantation
8. Limitations
9. Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ATG | Antithymocyte globulins |
| CKD | Chronic kidney disease |
| CPR | Cardiopulmonary resuscitation |
| CRS | Cytokine release syndrome |
| EKG | Electrocardiography |
| FDA | Food and Drug Administration |
| ICU | Intensive care unit |
| IL-6 | Interleukin-6 |
| IM | Intramuscular |
| IV | Intravenous |
| NIAID | National Institute of Allergy and Infectious Diseases |
| NK | Natural killer |
| NPV | Negative predictive value |
| POCUS | Point-of-care ultrasound |
| rATG | Rabbit antithymocyte globulin |
| SPT | Skin prick testing |
| TOE | Transesophageal echocardiography |
| WAO | World Allergy Organization |
References
- Gabardi, S.; Martin, S.T.; Roberts, K.L.; Grafals, M. Induction immunosuppressive therapies in renal transplantation. Am. J. Health-Syst. Pharm. 2011, 68, 211–218. [Google Scholar] [CrossRef]
- Cai, J.; Terasaki, P.I. Induction immunosuppression improves long-term graft and patient outcome in organ transplantation: An analysis of United Network for Organ Sharing registry data. Transplantation 2010, 90, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Ciancio, G.; Burke, G.W.; Miller, J. Induction Therapy in Renal Transplantation. Drugs 2007, 67, 2667–2680. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, A.C. Induction Therapy in Renal Transplantation: Why? What Agent? What Dose? We May Never Know. Clin. J. Am. Soc. Nephrol. 2015, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Opelz, G.; Unterrainer, C.; Süsal, C.; Döhler, B. Efficacy and safety of antibody induction therapy in the current era of kidney transplantation. Nephrol. Dial. Transplant. 2016, 31, 1730–1738. [Google Scholar] [CrossRef]
- Malvezzi, P.; Jouve, T.; Rostaing, L. Induction by anti-thymocyte globulins in kidney transplantation: A review of the literature and current usage. J. Nephropathol. 2015, 4, 110–115. [Google Scholar] [CrossRef]
- Alloway, R.R.; Woodle, E.S.; Abramowicz, D.; Segev, D.L.; Castan, R.; Ilsley, J.N.; Jeschke, K.; Somerville, K.T.; Brennan, D.C. Rabbit anti-thymocyte globulin for the prevention of acute rejection in kidney transplantation. Am. J. Transplant. 2019, 19, 2252–2261. [Google Scholar] [CrossRef]
- Hellemans, R.; Hazzan, M.; Durand, D.; Mourad, G.; Lang, P.; Kessler, M.; Charpentier, B.; Touchard, G.; Berthoux, F.; Merville, P.; et al. Daclizumab Versus Rabbit Antithymocyte Globulin in High-Risk Renal Transplants: Five-Year Follow-up of a Randomized Study. Am. J. Transplant. 2015, 15, 1923–1932. [Google Scholar] [CrossRef]
- Oh, J.; Agarwal, S.; Miller, R.L.; Ho, H.E. Immediate adverse reactions to horse antithymocyte globulin: A 10-year single-center experience. J. Allergy Clin. Immunol. Pract. 2022, 10, 2176–2177.e1. [Google Scholar] [CrossRef]
- Saeed, M.I.; Nicklas, R.D.; Kumar, V.; Kapoor, R.; Gani, I.Y. Severe Intraoperative Anaphylaxis Related to Thymoglobulin during Living Donor Kidney Transplantation. Antibodies 2020, 9, 43. [Google Scholar] [CrossRef]
- Roncati, L.; Barbolini, G.; Scacchetti, A.T.; Busani, S.; Maiorana, A. Unexpected death: Anaphylactic intraoperative death due to Thymoglobulin carbohydrate excipient. Forensic Sci. Int. 2013, 228, e28–e32. [Google Scholar] [CrossRef]
- Huh, J.; Baines, L.; Talbot, D.; MacFie, C. Severe anti-thymocyte globulin-induced cytokine release syndrome in a renal transplant patient. Anaesth. Rep. 2021, 9, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Do, S.H.; Na, H.S.; Kim, M.H.; Jeon, Y.T.; Hwang, J.W. Anaphylaxis caused by latex surgical gloves immediately after starting surgery—A case report. Korean J. Anesthesiol. 2010, 59, S99–S102. [Google Scholar] [CrossRef]
- Turner, P.J.; Gowland, M.H.; Sharma, V.; Ierodiakonou, D.; Harper, N.; Garcez, T.; Pumphrey, R.; Boyle, R.J. Increase in anaphylaxis-related hospitalizations but no increase in fatalities: An analysis of United Kingdom national anaphylaxis data, 1992-2012. J. Allergy Clin. Immunol. 2015, 135, 956–963.e1. [Google Scholar] [CrossRef] [PubMed]
- Tjon, J.M.L.; Langemeijer, S.M.C.; Halkes, C.J.M. Anti Thymocyte Globulin-Based Treatment for Acquired Bone Marrow Failure in Adults. Cells 2021, 10, 2905. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Y.; Chen, X.; Pang, A.; Zhao, Y.; Liu, L.; Ma, R.; Wei, J.; He, Y.; Yang, D.; et al. Comparison of porcine ALG and rabbit ATG on outcomes of HLA-haploidentical hematopoietic stem cell transplantation for patients with acquired aplastic anemia. Cancer Cell Int. 2022, 22, 1–9. [Google Scholar] [CrossRef]
- Thiyagarajan, U.M.; Ponnuswamy, A.; Bagul, A. Thymoglobulin and Its Use in Renal Transplantation: A Review. Am. J. Nephrol. 2013, 37, 586–601. [Google Scholar] [CrossRef]
- Brennan, D.C.; Flavin, K.; Lowell, J.A.; Howard, T.K.; Shenoy, S.; Burgess, S.; Dolan, S.; Kano, J.M.; Mahon, M.; Schnitzler, M.A.; et al. A randomized, double-blinded comparison of Thymoglobulin versus Atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation 1999, 67, 1011–1018. [Google Scholar] [CrossRef]
- Hardinger, K.L.; Schnitzler, M.A.; Miller, B.; Lowell, J.A.; Shenoy, S.; Koch, M.J.; Enkvetchakul, D.; Ceriotti, C.; Brennan, D.C. Five-Year Follow Up of Thymoglobulin Versus ATGAM Induction in Adult Renal Transplantation. Transplantation 2004, 78, 136–141. [Google Scholar] [CrossRef]
- James, A.; Mannon, R.B. The Cost of Transplant Immunosuppressant Therapy: Is This Sustainable? Curr. Transplant. Rep. 2015, 2, 113–121. [Google Scholar] [CrossRef]
- Ippoliti, G.; Lucioni, M.; Leonardi, G.; Paulli, M. Immunomodulation with rabbit anti-thymocyte globulin in solid organ transplantation. World J. Transplant. 2015, 5, 261–266. [Google Scholar] [CrossRef]
- Zand, M.S.; Vo, T.; Huggins, J.; Felgar, R.; Liesveld, J.; Pellegrin, T.; Bozorgzadeh, A.; Sanz, I.; Briggs, B.J. Polyclonal Rabbit Antithymocyte Globulin Triggers B-Cell and Plasma Cell Apoptosis by Multiple Pathways. Transplantation 2005, 79, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Stauch, D.; Dernier, A.; Marchese, E.S.; Kunert, K.; Volk, H.-D.; Pratschke, J.; Kotsch, K. Targeting of Natural Killer Cells by Rabbit Antithymocyte Globulin and Campath-1H: Similar Effects Independent of Specificity. PLoS ONE 2009, 4, e4709. [Google Scholar] [CrossRef] [PubMed]
- Irure, J.; Sango, C.; Segundo, D.S.; Fernández-Fresnedo, G.; Ruiz, J.C.; Benito-Hernández, A.; Asensio, E.; López-Hoyos, M.; Rodrigo, E. Late Plasma Cell Depletion After Thymoglobulin Induction in Kidney Transplant Recipients. Exp. Clin. Transplant. 2019, 17, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Andress, L.; Gupta, A.; Siddiqi, N.; Marfo, K. Rabbit anti-thymocyte globulin induction in renal transplantation: Review of the literature. Transpl. Res. Risk Manag. 2014, 6, 9–21. [Google Scholar] [CrossRef]
- Elazhary, S.; Alawyat, H.A. Bradycardia associated with antithymocyte globulin treatment of a pediatric patient with sickle cell disease: A case report and literature review. Hematol. Transfus. Cell Ther. 2022, 44, 284–287. [Google Scholar] [CrossRef]
- Hardinger, K.L. Rabbit antithymocyte globulin induction therapy in adult renal transplantation. Pharmacotherapy 2006, 26, 1771–1783. [Google Scholar] [CrossRef]
- Boothpur, R.; Hardinger, K.L.; Skelton, R.M.; Lluka, B.; Koch, M.J.; Miller, B.W.; Desai, N.M.; Brennan, D.C. Serum Sickness After Treatment With Rabbit Antithymocyte Globulin in Kidney Transplant Recipients With Previous Rabbit Exposure. Am. J. Kidney Dis. 2010, 55, 141–143. [Google Scholar] [CrossRef]
- Salehin, S.; Kumar, A.; Harsell, N.; Salim, H.; Hussain, S.A.; Kueht, M.; Mujtaba, M.A. A case series of perioperative anaphylaxis to cefazolin during kidney transplant and review of literature. Transpl. Immunol. 2022, 75, 101720. [Google Scholar] [CrossRef]
- Mali, S. Anaphylaxis during the perioperative period. Anesth. Essays Res. 2012, 6, 124–133. [Google Scholar] [CrossRef]
- Shaker, M.S. Anaphylaxis: Definition and criteria. J. Food Allergy 2024, 6, 26–31. [Google Scholar] [CrossRef]
- Cardona, V.; Ansotegui, I.J.; Ebisawa, M.; El-Gamal, Y.; Rivas, M.F.; Fineman, S.; Geller, M.; Gonzalez-Estrada, A.; Greenberger, P.A.; Borges, M.S.; et al. World Allergy Organization Anaphylaxis Guidance 2020. World Allergy Organ. J. 2020, 13, 100472. [Google Scholar] [CrossRef]
- Yeğit, O.O.; Aslan, A.F.; Coşkun, R.; Karadağ, P.; Toprak, I.D.; Can, A.; Öztop, N.; Demir, S.; Ünal, D.; Olgaç, M.; et al. Comparison of recent anaphylaxis diagnostic criteria in real life: Can more patients be diagnosed as having anaphylaxis? World Allergy Organ. J. 2023, 16, 100810. [Google Scholar] [CrossRef]
- Nuñez-Borque, E.; Fernandez-Bravo, S.; Yuste-Montalvo, A.; Esteban, V. Pathophysiological, Cellular, and Molecular Events of the Vascular System in Anaphylaxis. Front. Immunol. 2022, 13, 836222. [Google Scholar] [CrossRef]
- Peavy, R.D.; Metcalfe, D.D. Understanding the mechanisms of anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 310–315. [Google Scholar] [CrossRef]
- Kraft, M.; Hofmeier, K.S.; Ruëff, F.; Pföhler, C.; Renaudin, J.-M.; Bilò, M.B.; Treudler, R.; Lang, R.; Cichocka-Jarosz, E.; Fernandez-Rivas, M.; et al. Risk Factors and Characteristics of Biphasic Anaphylaxis. J. Allergy Clin. Immunol. Pr. 2020, 8, 3388–3395.e6. [Google Scholar] [CrossRef]
- Golden, D.B.K. Patterns of anaphylaxis: Acute and late phase features of allergic reactions. In Anaphylaxis: Novartis Foundation Symposium; John Wiley & Sons, Ltd.: Chichester, UK, 2004; Volume 257, pp. 101–115; discussion pp. 110–115, 157–160, 276–285. [Google Scholar]
- Brabant, S.; Facon, A.; Provôt, F.; Labalette, M.; Wallaert, B.; Chenivesse, C. An avoidable cause of thymoglobulin anaphylaxis. Allergy Asthma Clin. Immunol. 2017, 13, 13. [Google Scholar] [CrossRef]
- Pourmand, A.; Robinson, C.; Syed, W.; Mazer-Amirshahi, M. Biphasic anaphylaxis: A review of the literature and implications for emergency management. Am. J. Emerg. Med. 2018, 36, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.-W.; Kim, Y.-S.; Kim, D.-K.; Choi, J.-H.; Seo, K.-H.; Im, S.-Y.; Kwon, K.-S.; Lee, M.-S.; Ha, T.-Y.; Lee, H.-K. Platelet-activating Factor–mediated NF-κB Dependency of a Late Anaphylactic Reaction. J. Exp. Med. 2003, 198, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Sampson, H.A.; Mendelson, L.; Rosen, J.P. Fatal and near-fatal anaphylactic reactions to food in children and adolescents. N. Engl. J. Med. 1992, 327, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Yoon, S.H.; Lee, S.-Y.; Choi, Y.H.; Park, C.M.; Kang, H.-R.; Cho, S.-H. Biphasic and protracted anaphylaxis to iodinated contrast media. Eur. Radiol. 2017, 28, 1242–1252. [Google Scholar] [CrossRef]
- Crowell-Davis, S. Rabbit Behavior. Vet. Clin. N. Am. Exot. Anim. Pract. 2021, 24, 53–62. [Google Scholar] [CrossRef]
- Liccardi, G.; Piccolo, A.; Dente, B.; Salzillo, A.; Noschese, P.; Gilder, J.; Russo, M.; D’amato, G. Rabbit allergens: A significant risk for allergic sensitization in subjects without occupational exposure. Respir. Med. 2007, 101, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Berry, A.; Boscato, L.M.; Gordon, S.; Walsh, B.J.; Stuart, M.C. Identification of some rabbit allergens as lipocalins. Clin. Exp. Allergy 2001, 31, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Beeson, M.F.; Dewdney, J.M.; Edwards, R.G.; Lee, D.; Orr, R.G. Prevalence and diagnosis of laboratory animal allergy. Clin. Allergy 1983, 13, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Hemmer, W.; Sestak-Greinecker, G.; Braunsteiner, T.; Wantke, F.; Wöhrl, S. Molecular sensitization patterns in animal allergy: Relationship with clinical relevance and pet ownership. Allergy 2021, 76, 3687–3696. [Google Scholar] [CrossRef]
- Liccardi, G.; Triggiani, M.; Piccolo, A.; Salzillo, A.; Parente, R.; Manzi, F.; Vatrella, A. Sensitization to Common and Uncommon Pets or Other Furry Animals: Which May Be Common Mechanisms? Transl. Med. UniSa 2016, 14, 9–14. [Google Scholar]
- Hill, D.A.; Leahy, A.B.; Sciasci, J.; O’NEill, S.P.; Reilly, A.; Balamuth, N.; Seeholzer, S.H.; Spergel, J.M.; Brown-Whitehorn, T.F. Medication contaminants as a potential cause of anaphylaxis to vincristine. Pediatr. Blood Cancer 2017, 65. [Google Scholar] [CrossRef]
- Sanofi. Thymoglobulin (Anti-Thymocyte Globulin [Rabbit]) Prescribing Information; Sanofi: Paris, France, 2024; Available online: https://products.sanofi.us/thymoglobulin/thymoglobulin.pdf (accessed on 3 June 2025).
- Rayaprolu, B.M.; Strawser, J.J.; Anyarambhatla, G. Excipients in parenteral formulations: Selection considerations and effective utilization with small molecules and biologics. Drug Dev. Ind. Pharm. 2018, 44, 1565–1571. [Google Scholar] [CrossRef]
- Poziomkowska-Gęsicka, I.; Kurek, M. Clinical Manifestations and Causes of Anaphylaxis. Analysis of 382 Cases from the Anaphylaxis Registry in West Pomerania Province in Poland. Int. J. Environ. Res. Public Health 2020, 17, 2787. [Google Scholar] [CrossRef]
- Motosue, M.S.; Bellolio, M.F.; Van Houten, H.K.; Shah, N.D.; Campbell, R.L. Risk factors for severe anaphylaxis in the United States. Ann. Allergy Asthma Immunol. 2017, 119, 356–361.e2. [Google Scholar] [CrossRef]
- Worm, M.; Francuzik, W.; Renaudin, J.; Bilo, M.B.; Cardona, V.; Hofmeier, K.S.; Köhli, A.; Bauer, A.; Christoff, G.; Cichocka-Jarosz, E.; et al. Factors increasing the risk for a severe reaction in anaphylaxis: An analysis of data from The European Anaphylaxis Registry. Allergy 2018, 73, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- McLendon, K.; Sternard, B.T. Anaphylaxis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK482124/ (accessed on 28 April 2025).
- Erlich, C.; Lamer, A.; Moussa, M.D.; Martin, J.; Rogeau, S.; Tavernier, B. End-tidal Carbon Dioxide for Diagnosing Anaphylaxis in Patients with Severe Postinduction Hypotension. Anesthesiology 2022, 136, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Videnovic, N.; Markovic, N.; Mladenovic, J.; Jovic, M.; Mladenovic, R.; Zdravkovic, R. Severe Anaphylactic Reaction to Diclofenac during Intravenous Anesthesia for In Vitro Fertilization. Case Rep. Emerg. Med. 2019, 2019, 8583753. [Google Scholar] [CrossRef] [PubMed]
- Sterner, J.B.; Morris, M.J.; Sill, J.M.; Hayes, J.A. Inspiratory flow-volume curve evaluation for detecting upper airway disease. Respir. Care 2009, 54, 461–466. [Google Scholar]
- Kandil, E.; Alabbas, H.; Distant, D. Anaphylaxis to thymoglobulin: A case report and literature review. J. State Med. Soc. 2009, 161, 279–281. [Google Scholar]
- Navas-Blanco, J.R.; Cook, S.A.; Rico-Mora, D.A.; Patri, M.S.; Szymanski, T.J. Continuity of Care Following Intraoperative Cardiac Arrest due to Thymoglobulin®-induced Anaphylaxis. J. Clin. Diagn. Res. 2018, 12, 1. [Google Scholar] [CrossRef]
- Raval, D.B.A.; Prajapati, D.S.P.; Kedaria, D.M. Suspected Anti-Thymocyte Globulin induced severe Intraoperative Anaphylaxis in a Cadaveric Donor Renal Transplant recipient: A Case Report. IJFMR—Int. J. Multidiscip. Res. 2024, 6, 1–5. [Google Scholar] [CrossRef]
- Rafat, S.; Sandeep, S.; Tasneem, S.; Sanjay, A. Antithymocyte globulin-induced refractory hypotension in renal transplantation recipient. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 422–423. [Google Scholar] [CrossRef]
- Pyar, K.P.; Thant, M.M.; Lin, S.; Aung, S.M.; Maung, N.L.; Ko, K.Z.; Lynn, A.N.; Aung, M.; Shein, K.Z. Hypersensitivity Reaction to Anti-Thymocyte Globulin (Equine) Resulting in Hypotension, Cerebrovascular Accident, Intravascular Hemolysis, Thrombocytopenia, Acute Liver Injury, Delayed Graft Function, Acute Lung Injury, Followed By Fatal Anaphylaxis to Second Dose of Basiliximab in A Living Unrelated Kidney Transplant Recipient: A Case Report. J. Clin. Community Med. 2023, 5, 568–577. Available online: https://lupinepublishers.com/clinical-community-medicine/pdf/JCCM.MS.ID.000214.pdf. (accessed on 5 June 2025).
- Campbell, S.; Wall, L. INTRAOPERATIVE ANAPHYLAXIS TO RABBIT ANTI-THYMOCYTE GLOBULIN. Ann. Allergy Asthma Immunol. 2024, 133, S115. [Google Scholar] [CrossRef]
- Lertvipapath, P.; Jameekornrak Taweechue, A.; Wongsa, C.; Thongngarm, T.; Uawattanasakul, W.; Sompornrattanaphan, M. Concomitant chronic spontaneous urticaria treatment might hinder the diagnosis of occupational latex-induced anaphylaxis: A case report. Asian Pac. J. Allergy Immunol. 2021. [Google Scholar] [CrossRef]
- Tsotsolis, N.; Tsirgogianni, K.; Kioumis, I.; Pitsiou, G.; Baka, S.; Papaiwannou, A.; Karavergou, A.; Rapti, A.; Trakada, G.; Katsikogiannis, N.; et al. Pneumothorax as a complication of central venous catheter insertion. Ann. Transl. Med. 2015, 3, 12–40. [Google Scholar] [CrossRef]
- McKnight, C.L.; Burns, B. Pneumothorax. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK441885/ (accessed on 1 May 2025).
- Dal Magro, P.S.; Meinerz, G.; Garcia, V.D.; Mendes, F.F.; Marques, M.E.C.; Keitel, E. Kidney transplantation and perioperative complications: A prospective cohort study. Braz. J. Anesthesiol. Engl. Ed. 2024, 74, 844556. [Google Scholar] [CrossRef] [PubMed]
- Reyna-Sepúlveda, F.; Ponce-Escobedo, A.; Guevara-Charles, A.; Escobedo-Villarreal, M.; Pérez-Rodríguez, E.; Muñoz-Maldonado, G.; Hernández-Guedea, M. Outcomes and Surgical Complications in Kidney Transplantation. Int. J. Organ Transplant. Med. 2017, 8, 78–84. [Google Scholar]
- González, L.S.; Izquierdo, D.A.; Davidovich, R.M. Definition and diagnosis of intraoperative myocardial ischemia. Int. Anesthesiol. Clin. 2021, 59, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Wen, S.; Chen, G.; Zhang, W.; Ai, Y.; Yuan, J. Management of intra-operative acute pulmonary embolism during general anesthesia: A case report. BMC Anesthesiol. 2017, 17, 67. [Google Scholar] [CrossRef]
- Bryce, Y.C.; Perez-Johnston, R.; Bryce, E.B.; Homayoon, B.; Santos-Martin, E.G. Pathophysiology of right ventricular failure in acute pulmonary embolism and chronic thromboembolic pulmonary hypertension: A pictorial essay for the interventional radiologist. Insights Imaging 2019, 10, 18. [Google Scholar] [CrossRef]
- Vyas, V.; Sankari, A.; Goyal, A. Acute Pulmonary Embolism. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK560551/ (accessed on 1 May 2025).
- Samuel, S.; Amsalu, H.; Tesfaye, D.; Wolde, Y. Hemolytic reaction after major and minor compatible blood transfusion for a cesarean section patient in a resource-limited area: A case report. Int. J. Surg. Case Rep. 2024, 124, 110426. [Google Scholar] [CrossRef]
- Baxi, V.; Jain, A.; Dasgupta, D. Anaesthesia for Renal Transplantation: An Update. Indian J. Anaesth. 2009, 53, 139–147. [Google Scholar]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Knaus, H.A.; Rottner, T.; Baumann, C.K.; Cserna, J.; Mitterbauer, M.; Schulenburg, A.; Rabitsch, W.; Wohlfarth, P. Cytokine Release Syndrome during Antithymocyte Globulin/Anti-T Lymphocyte Globulin Serotherapy for Graft-versus-Host Disease Prophylaxis before Allogeneic Hematopoietic Stem Cell Transplantation: Incidence and Early Clinical Impact According to American Society of Transplantation and Cellular Therapy Grading Criteria. Transplant. Cell Ther. 2022, 28, 260.e1–260.e9. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.K.; Turtle, C.J. Assessment and Management of Cytokine Release Syndrome and Neurotoxicity Following CD19 CAR-T Cell Therapy. Expert. Opin. Biol. Ther. 2020, 20, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Akhter, S.; Jamil, I.; Shahab, D.; Rehman, A.; Kundi, I.; Khan, J.; Khan, S.; Hassan, S. 348.5: Life Threatening, Cytokine Release Storm (CRS) With Antithymocyte Globulin (ATG) And Its Management. Transplantation 2022, 106, S363. [Google Scholar] [CrossRef]
- Denny, J.T.; Burr, A.T.; Balzer, F.; Tse, J.T.; Denny, J.E.; Chyu, D. Methylene blue treatment for cytokine release syndrome-associated vasoplegia following a renal transplant with rATG infusion: A case report and literature review. Exp. Ther. Med. 2015, 9, 1915–1920. [Google Scholar] [CrossRef]
- Hassan, A.M.; Hill, H.; Donley, C.; Leonelli, C. Potential anaphylactoid reaction to nicardipine. J. Am. Coll. Emerg. Physicians Open 2024, 5, e13271. [Google Scholar] [CrossRef]
- Luskin, A.T.; Luskin, S.S. Anaphylaxis and Anaphylactoid Reactions: Diagnosis and Management. Am. J. Ther. 1996, 3, 515–520. [Google Scholar] [CrossRef]
- Sage, D.J. Management of acute anaphylactoid reactions. Int. Anesthesiol. Clin. 1985, 23, 175–186. [Google Scholar] [CrossRef]
- Sebeo, J.; Ezziddin, O.; Eisenkraft, J.B. Severe anaphylactoid reaction to thymoglobulin in a pediatric renal transplant recipient. J. Clin. Anesth. 2012, 24, 659–663. [Google Scholar] [CrossRef]
- Savic, L.; Wood, P.M.; Savic, S. Anaphylaxis associated with general anaesthesia: Challenges and recent advances. Trends Anaesth. Crit. Care 2012, 2, 258–263. [Google Scholar] [CrossRef]
- Admass, B.A.; Hassen, A.E.; Agegnehu, A.F.; Temesgen, M.M.; Gebeyehu, N.A.; Ferede, Y.A.; Tegegne, B.A. Management of perioperative anaphylaxis: Systematic review. Int. J. Surg. Open 2023, 52, 100595. [Google Scholar] [CrossRef]
- Ring, J.; Beyer, K.; Biedermann, T.; Bircher, A.; Duda, D.; Fischer, J.; Friedrichs, F.; Fuchs, T.; Gieler, U.; Jakob, T.; et al. Guideline for acute therapy and management of anaphylaxis. Allergo J. Int. 2014, 23, 96–112. [Google Scholar] [CrossRef]
- Brown, J.C.; Simons, E.; Rudders, S.A. Epinephrine in the Management of Anaphylaxis. J. Allergy Clin. Immunol. Pract. 2020, 8, 1186–1195. [Google Scholar] [CrossRef]
- Dewachter, P.; Savic, L. Perioperative anaphylaxis: Pathophysiology, clinical presentation and management. BJA Educ. 2019, 19, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Dalal, R.; Grujic, D. Epinephrine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK482160/ (accessed on 3 May 2025).
- Hearrell, M.; Anagnostou, A. Diagnosis and management of anaphylaxis. J. Food Allergy 2020, 2, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Golden, D.B.K.; Wang, J.; Waserman, S.; Akin, C.; Campbell, R.L.; Ellis, A.K.; Greenhawt, M.; Lang, D.M.; Ledford, D.K.; Lieberman, J.; et al. Anaphylaxis: A 2023 practice parameter update. Ann. Allergy Asthma Immunol. 2023, 132, 124–176. [Google Scholar] [CrossRef] [PubMed]
- Dodd, A.; Turner, P.J.; Soar, J.; Savic, L.; representing the UK Perioperative Allergy Network. Emergency treatment of peri-operative anaphylaxis: Resuscitation Council UK algorithm for anaesthetists. Anaesthesia 2024, 79, 535–541. [Google Scholar] [CrossRef]
- Giannetti, M.P. Epidemiology, Risk Factors, and Management of Biphasic Anaphylaxis. Curr. Allergy Asthma Rep. 2024, 24, 651–656. [Google Scholar] [CrossRef]
- Alqurashi, W.; Ellis, A.K. Do Corticosteroids Prevent Biphasic Anaphylaxis? J. Allergy Clin. Immunol. Pract. 2017, 5, 1194–1205. [Google Scholar] [CrossRef]
- Sadleir, P.H.M.; Clarke, R.C.; Bozic, B.; Platt, P.R. Consequences of proceeding with surgery after resuscitation from intra-operative anaphylaxis. Anaesthesia 2018, 73, 32–39. [Google Scholar] [CrossRef]
- Kim, T.H.; Yoon, S.H.; Hong, H.; Kang, H.R.; Cho, S.H.; Lee, S.Y. Duration of Observation for Detecting a Biphasic Reaction in Anaphylaxis: A Meta-Analysis. Int. Arch. Allergy Immunol. 2019, 179, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.B.; Yunginger, J.W.; Miller, J.; Bokhari, R.; Dull, D. Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J. Clin. Investig. 1989, 83, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, T.; Takazawa, T.; Haraguchi, T.; Orihara, M.; Nagumo, K.; Saito, S. Investigating the optimal diagnostic value of histamine for diagnosing perioperative hypersensitivity: A prospective, observational study. J. Anesth. 2023, 37, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Platzgummer, S.; Bizzaro, N.; Bilò, M.; Pravettoni, V.; Cecchi, L.; Sargentini, V.; Caponi, L.; Visentini, D.; Brusca, I.; Pesce, G.; et al. Recommendations for the Use of Tryptase in the Diagnosis of Anaphylaxis and Clonal Mastcell Disorders. Eur. Ann. Allergy Clin. Immunol. 2020, 52, 51–61. [Google Scholar] [CrossRef]
- Brown, S.G.A.; Blackman, K.E.; Heddle, R.J. Can serum mast cell tryptase help diagnose anaphylaxis? Emerg. Med. Australas. EMA. 2004, 16, 120–124. [Google Scholar] [CrossRef]
- Hansen, K.; Bjornsson, H.M.; Gunnbjornsdottir, M.I. Utility of serum tryptase in Emergency Department patients with possible anaphylaxis. Laeknabladid 2021, 107, 470–475. [Google Scholar] [CrossRef]
- Vitte, J.; Amadei, L.; Gouitaa, M.; Mezouar, S.; Zieleskiewicz, L.; Albanese, J.; Bruder, N.; Lagier, D.; Mertès, P.M.; Mège, J.; et al. Paired acute-baseline serum tryptase levels in perioperative anaphylaxis: An observational study. Allergy 2019, 74, 1157–1165. [Google Scholar] [CrossRef]
- Voelker, D.; Pongdee, T. Biomarkers in the diagnosis of mast cell activation. Curr. Opin. Allergy Clin. Immunol. 2025, 25, 27–33. [Google Scholar] [CrossRef]
- Stephan, V.; Zimmermann, A.; Kühr, J.; Urbanek, R. Determination of N-methylhistamine in urine as an indicator of histamine release in immediate allergic reactions. J. Allergy Clin. Immunol. 1990, 86 Pt 1, 862–868. [Google Scholar] [CrossRef]
- Pinto, J.; Debowska, M.; Gomez, R.; Waniewski, J.; Lindholm, B. Urine volume as an estimator of residual renal clearance and urinary removal of solutes in patients undergoing peritoneal dialysis. Sci. Rep. 2022, 12, 18755. [Google Scholar] [CrossRef]
- Birch, K.; Pearson-Shaver, A.L. Allergy Testing. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK537020/ (accessed on 10 May 2025).
- Orihara, M.; Takazawa, T.; Nagumo, K.; Sakamoto, S.; Horiuchi, T.; Saito, S. Interpreting the results of early skin tests after perioperative anaphylaxis requires special attention: A case report and review of literature. J. Anesth. 2020, 34, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Curin, M.; Hilger, C. Allergy to pets and new allergies to uncommon pets. Allergol. Sel. 2017, 1, 214–221. [Google Scholar] [CrossRef]
- Asderakis, A.; Sabah, T.K.; Watkins, W.J.; Khalid, U.; Szabo, L.; Stephens, M.R.; Griffin, S.; Chavez, R. Thymoglobulin Versus Alemtuzumab Versus Basiliximab Kidney Transplantation From Donors After Circulatory Death. Kidney Int. Rep. 2022, 7, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Prieto-García, A.; Noguerado, B.; Rojas, P.; Torrado, I.; Rodríguez-Fernández, A.; Tornero, P. Unexpected Anaphylaxis After Completing a Desensitization Protocol to Oxaliplatin: Successful Adjuvant Use of Omalizumab. J. Investig. Allergol. Clin. Immunol. 2019, 29, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Holen, A. Fatal Anaphylactic Shock from Wasp Sting Despite Desensitisation—A Case Report. Ann. Clin. Med. Case Rep. 2021, 7, 1–3. [Google Scholar]
- Pampura, A.; Esakova, N.; Zimin, S.; Filippova, E. Anaphylaxis biomarkers: Present and future. Eur. Ann. Allergy Clin. Immunol. 2024, 56, 243–251. [Google Scholar] [CrossRef]



| Side Effects |
|---|
| Fever Diffuse hives/urticaria Leukopenia Thrombocytopenia Lymphopenia Hypotension Bradycardia Pulmonary edema Chest pain Cytokine Release Syndrome Anaphylactic shock Serum sickness Angioedema Disseminated Intravascular Coagulation Altered mental status |
| NIAID Criteria | WAO Criteria | ||
|---|---|---|---|
| Anaphylaxis is likely when one of the following criteria is met: | |||
| 1. | Acute onset of symptoms with involvement of skin, mucosal tissue, or both, along with one of the following:
| 1. | Acute onset with skin or mucosal involvement and at least one of the following:
|
| 2. | Two or more of the following after likely allergen exposure:
| ||
| 3. | Low blood pressure after known allergen exposure:
| 2. | Rapid onset of hypotension, bronchospasm, or laryngeal involvement following exposure to a known or suspected allergen (within minutes to hours), even in the absence of typical skin symptoms. |
| Study | Age/Sex | Ethnicity | Type of Donor | Indication for Transplantation | Past Medical History | Pre-Medication | Thymoglobulin Dose | Reaction Onset | Presentation | Management | Outcome |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Kandil et al. (2009) [59] | 39/F | NDA | Deceased donor | ESRD | Hypertension, colostomy, and reversal of colostomy | Methylprednisolone | 125 mg IV | 1–2 min after initiation | Absent pulse, hypotension, bradycardia, absent breath sounds on the left, wheezing on the right, decrease in end tidal CO2, and O2 saturation | CPR, atropine, epinephrine, mechanical ventilation, chest tube, pericardiocentesis | Discharged on day five; no information on retransplantation |
| Brabant et al. (2017) [38] | 24/M | Caucasian | NDA | ESRD (spina bifida, neurogenic bladder with Bricker ileal conduit complicated by chronic renal failure) | Asthma, allergic rhinitis. Allergy/atopy: rabbits, pollens, house dust mites, latex, and vancomycin | NDA | 12.5 mg/hour | Within 3 min | Hypotension, bradycardia, erythroderma, and bronchospasm | Thymoglobulin infusion stopped, resuscitation with external cardiac massage and adrenaline IV. Adrenaline infusion and terbutaline nebulization | Patient not transplanted as of report date |
| Rafat et al. (2017) [62] | 43/M | NDA | Living donor | ESRD (Failure of previous transplantation) | Prior renal transplant | NDA | 75 mg (at 4 AM) | Intraoperative (Total elapsed time since infusion not available) | Refractory hypotension (anaphylaxis as per WAO criteria for anaphylaxis) | Vasopressors, mechanical ventilation | Deteriorated postoperatively and expired after 24 h |
| Navas-Blanco et al. (2018) [60] | 51/M | NDA | Deceased donor | ESRD | Uncontrolled hypertension, no documented allergies | Methylprednisolone, diphenhydramine | 125 mg IV | Three minutes after initiation | Swelling around the head and neck, hypotension, low end-tidal CO2, tachycardia progressing to PEA arrest, and underfilled LV on TOE | CPR, IV epinephrine, norepinephrine infusion, mechanical ventilation, procedure aborted | Discharged on day five, developed chronic left-sided chest pain; no information on retransplantation |
| Saeed et al. (2020) [10] | 67/F | Caucasian | Living donor | ESRD | Prior rabbit exposure (undocumented), no documented allergies | Diphenhydramine, acetaminophen, methylprednisolone, famotidine | 75 mg IV | Within minutes | Hypotension, tachycardia, wheezing, and elevation of peak airway pressure | Stopped infusion, vasopressors started, IV steroids, plasmapheresis, and mechanical ventilation | Successful transplant 72h later with basiliximab induction |
| Pyar et al. (2023) [63] | 58/M | NDA | Living Donor | ESRD (Possibly diabetic kidney disease) | Smoker, diabetes mellitus, multiple prior blood transfusions, and coronary artery disease | Premedication is not specifically mentioned; however, ATG administration followed transplant protocol | 750 mg | After 10 h | Hypotension (3 h post-operatively), CVA secondary to anaphylaxis: altered mental state (GCS: 8/15), right hemiparesis, dysphagia, motor aphasia, right facial palsy, intravascular hemolysis, thrombocytopenia, acute liver injury, delayed allograft function, acute respiratory distress syndrome | Noradrenaline (3 h post-operatively), IM adrenaline, stopped ATG, started Basiliximab, steroids, hemodialysis, oxygen/NIV, PRP, insulin, fluid management, ACLS | Deteriorated on the 5th post-operative day. Anaphylactic reaction to the second dose of basiliximab. Patient expired after cardiac arrest during ETT insertion |
| Raval et al. (2024) [61] | 22/M | NDA | Deceased donor | ESRD (Autosomal Dominant Polycystic Kidney Disease) | Hypertension; no documented allergy to latex or rabbits, and no known exposure to rabbits | Pheniramine maleate, acetaminophen, and methylprednisolone | 75 mg | Within 2 min | Bilateral wheezing, which later progressed to a silent chest, Hypoxia, elevation of peak airway pressure, bradycardia, and hypotension | Thymoglobulin infusion stopped, IV adrenaline, fluid bolus, diphenhydramine, dexamethasone, and hydrocortisone. Salbutamol and budesonide via ETT. Ventilatory support adjusted. Trendelenburg position | Following stabilization, the procedure was continued. Renal transplant completed using double-diluted rATG |
| Campbell et al. (2024) [64] | 12/F | Caucasian | NDA | ESRD (renal dysplasia) | No prior exposure to ATG or rabbits | Acetaminophen, methylprednisolone, diphenhydramine | NDA | Within minutes | Rash, hypotension, tachycardia, dyspnea | Epinephrine, corticosteroids, diphenhydramine | NDA |
| Outcome | Number of Cases (n) | Percentage (%) |
|---|---|---|
| Cardiovascular collapse (CPR required) | 4 | 50.0 |
| Procedure aborted/deferred | 3 | 37.5 |
| Procedure completed after stabilization | 4 | 50.0 |
| Reported mortality | 2 | 25.0 |
| Alternative induction agent used | 2 | 25.0 |
| Feature | Anaphylaxis | Anaphylactoid Reactions | Cytokine Release Syndrome |
|---|---|---|---|
| Mechanism | IgE-mediated (Type I hypersensitivity) | Non-IgE-mediated mast cell/basophil activation | Non-IgE-mediated mast cell/basophil activation |
| Onset (after exposure) | Minutes to hours | Minutes to hours | Hours to days (in some cases, it can occur within minutes) |
| Symptoms | Rash, hypotension, angioedema, bronchospasm | Similar to anaphylaxis | Fever, hypotension, hypoxia, organ dysfunction |
| Laboratory Findings | Elevated tryptase, elevated histamine, and elevated urinary methylhistamine measurement | Elevated tryptase, elevated histamine, negative IgE, and skin prick test | Elevated CRP, ESR, IL-6 |
| Diagnostic criteria | NIAID/WAO Criteria | - | - |
| Supportive Testing | Serum IgE testing/Skin prick test | - | - |
| Treatment | Epinephrine, antihistamines, corticosteroids | Similar to anaphylaxis | Supportive care, IL-6 blocker (tocilizumab) |
| Prognosis | Resolves with treatment | Resolves with treatment | Can be severe and life-threatening |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gani, I.; Baig, U.; Mirza, A.; Jallu, S.; Chawdhary, A.A. Rabbit-Derived Antithymocyte Globulin-Associated Perioperative Anaphylaxis in Renal Transplantation: A Multidisciplinary Perspective on Pathophysiology, Clinical Presentation, and Management. Antibodies 2025, 14, 92. https://doi.org/10.3390/antib14040092
Gani I, Baig U, Mirza A, Jallu S, Chawdhary AA. Rabbit-Derived Antithymocyte Globulin-Associated Perioperative Anaphylaxis in Renal Transplantation: A Multidisciplinary Perspective on Pathophysiology, Clinical Presentation, and Management. Antibodies. 2025; 14(4):92. https://doi.org/10.3390/antib14040092
Chicago/Turabian StyleGani, Imran, Usman Baig, Ahmad Mirza, Shais Jallu, and Abrar Ahad Chawdhary. 2025. "Rabbit-Derived Antithymocyte Globulin-Associated Perioperative Anaphylaxis in Renal Transplantation: A Multidisciplinary Perspective on Pathophysiology, Clinical Presentation, and Management" Antibodies 14, no. 4: 92. https://doi.org/10.3390/antib14040092
APA StyleGani, I., Baig, U., Mirza, A., Jallu, S., & Chawdhary, A. A. (2025). Rabbit-Derived Antithymocyte Globulin-Associated Perioperative Anaphylaxis in Renal Transplantation: A Multidisciplinary Perspective on Pathophysiology, Clinical Presentation, and Management. Antibodies, 14(4), 92. https://doi.org/10.3390/antib14040092

