Development of a Chicken Immunoglobulin Heavy Chain Variable Region (VH) Single-Domain Antibody (sdAb) Against Calsequestrin (CSQ) and Its Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Expression and Purification of Recombinant Proteins
2.3. Generation and Preparation of the Anti-CSQ VH sdAb
2.4. Differential Scanning Calorimetry (DSC)
2.5. Conjugation PE06 VH-Cκ Fusion Protein to HRP and Alexa Fluor 647 Fluorescent Dye
2.6. Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Biolayer Interferometry (BLI)
2.8. Immunoblot Analysis
2.9. Flow Cytometry
2.10. Protein Structure Modeling
2.11. Statistical Analysis
3. Results
3.1. Generation of Anti-CSQ Chicken sdAb
3.2. Characterization of Anti-CSQ sdAbs
3.3. Thermal Stability of PE06 VH-Cκ sdAb
3.4. Evaluation of Anti-CSQ sdAb in ELISA
3.5. BLI-Based Characterization of PE06 VH-Cκ Binding
3.6. Application of Anti-CSQ adAb as Secondary Antibody in Immunoblot Analysis
3.7. Flow Cytometry Analysis Using Anti-CSQ sdAb
3.8. In Silico Modeling of Anti-CSQ sdAbs and CSQ Complexes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) |
AF647 | Alexa Fluor™ 647 |
BSA | Bovine Serum Albumin |
BLI | Biolayer Interferometry |
CDR | Complementarity-Determining Region |
Cκ | Human Kappa Light Chain Constant Region |
CSQ | Calsequestrin |
DMEM | Dulbecco’s Modified Eagle Medium |
DSC | Differential Scanning Calorimetry |
ECL | Enhanced Chemiluminescence |
EC50 | Half-Maximal Effective Concentration |
EDTA | Ethylenediaminetetraacetic Acid |
ELISA | Enzyme-Linked Immunosorbent Assay |
FBS | Fetal Bovine Serum |
hFc | Human Fc Region |
HRP | Horseradish Peroxidase |
IPTG | Isopropyl β-D-1-thiogalactopyranoside |
LC | Light Chain |
PAE | Predicted Aligned Error |
PBS | Phosphate-Buffered Saline |
PBST | Phosphate-Buffered Saline with Tween 20 |
pLDDT | Predicted Local Distance Difference Test |
RBD | Receptor-Binding Domain |
RyR | Ryanodine Receptor |
SDS-PAGE | Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis |
sdAb | Single-Domain Antibody |
SR | Sarcoplasmic Reticulum |
Tm | Melting Temperature |
VH | Variable Heavy Chain |
VHH | Variable Domain of Heavy Chain Antibody |
References
- Beard, N.A.; Sakowska, M.M.; Dulhunty, A.F.; Laver, D.R. Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys. J. 2002, 82 Pt 1, 310–320. [Google Scholar] [CrossRef]
- Wang, Q.; Michalak, M. Calsequestrin. Structure, function, and evolution. Cell Calcium 2020, 90, 102242. [Google Scholar] [CrossRef]
- Wang, Q.; Paskevicius, T.; Filbert, A.; Qin, W.; Kim, H.J.; Chen, X.-Z.; Tang, J.; Dacks, J.B.; Agellon, L.B.; Michalak, M. Phylogenetic and biochemical analysis of calsequestrin structure and association of its variants with cardiac disorders. Sci. Rep. 2020, 10, 18115. [Google Scholar] [CrossRef]
- Beard, N.; Laver, D.; Dulhunty, A. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog. Biophys. Mol. Biol. 2004, 85, 33–69. [Google Scholar] [CrossRef]
- Wang, S.; Trumble, W.R.; Liao, H.; Wesson, C.R.; Dunker, A.K.; Kang, C. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat. Struct. Mol. Biol. 1998, 5, 476–483. [Google Scholar] [CrossRef]
- Titus, E.W.; Deiter, F.H.; Shi, C.; Wojciak, J.; Scheinman, M.; Jura, N.; Deo, R.C. The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia. Nat. Struct. Mol. Biol. 2020, 27, 1142–1151. [Google Scholar] [CrossRef]
- Sanchez, E.J.; Lewis, K.M.; Danna, B.R.; Kang, C. High-capacity Ca2+ binding of human skeletal calsequestrin. J. Biol. Chem. 2012, 287, 11592–11601. [Google Scholar] [CrossRef]
- Gaburjakova, M.; Bal, N.C.; Gaburjakova, J.; Periasamy, M. Functional interaction between calsequestrin and ryanodine receptor in the heart. Cell. Mol. Life Sci. 2013, 70, 2935–2945. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Keum, J.-W.; Kim, D.-M.; Mitraki, A. Expression screening of fusion partners from an E. coli genome for soluble expression of recombinant proteins in a cell-free protein synthesis system. PLoS ONE 2011, 6, e26875. [Google Scholar] [CrossRef]
- Park, H.; Jeon, H.; Cha, H.J.; Bang, J.; Song, Y.; Choi, M.; Sung, D.; Choi, W.I.; Lee, J.H.; Woo, J.-S.; et al. Purification of Therapeutic Antibodies Using the Ca2+-Dependent Phase-Transition Properties of Calsequestrin. Anal. Chem. 2022, 94, 5875–5882. [Google Scholar] [CrossRef]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Songa, E.B.; Bendahman, N.; Hammers, R. Naturally Occurring Antibodies Devoid of Light Chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef]
- Greenberg, A.S.; Avila, D.; Hughes, M.; Hughes, A.; McKinney, E.C.; Flajnik, M.F. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995, 374, 168–173. [Google Scholar] [CrossRef]
- Wu, L.; Oficjalska, K.; Lambert, M.; Fennell, B.J.; Darmanin-Sheehan, A.; Shúilleabháin, D.N.; Autin, B.; Cummins, E.; Tchistiakova, L.; Bloom, L.; et al. Fundamental Characteristics of the Immunoglobulin VH Repertoire of Chickens in Comparison with Those of Humans, Mice, and Camelids. J. Immunol. 2012, 188, 322–333. [Google Scholar] [CrossRef]
- Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef]
- Mallaby, J.; Ng, J.; Stewart, A.; Sinclair, E.; Dunn-Walters, D.; Hershberg, U. Chickens, more than humans, focus the diversity of their immunoglobulin genes on the complementarity-determining region but utilise amino acids, indicative of a more cross-reactive antibody repertoire. Front. Immunol. 2022, 13, 837246. [Google Scholar] [CrossRef]
- Conrath, K.E.; Lauwereys, M.; Galleni, M.; Matagne, A.; FrèrE, J.-M.; Kinne, J.; Wyns, L.; Muyldermans, S. β-lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae. Antimicrob. Agents Chemother. 2001, 45, 2807–2812. [Google Scholar] [CrossRef]
- Lavinder, J.J.; Hoi, K.H.; Reddy, S.T.; Wine, Y.; Georgiou, G.; Di Noia, J.M. Systematic characterization and comparative analysis of the rabbit immunoglobulin repertoire. PLoS ONE 2014, 9, e101322. [Google Scholar] [CrossRef]
- Joyce, C.; Burton, D.R.; Briney, B. Comparisons of the antibody repertoires of a humanized rodent and humans by high throughput sequencing. Sci. Rep. 2020, 10, 1120. [Google Scholar] [CrossRef]
- Leighton, P.A.; Morales, J.; Harriman, W.D.; Ching, K.H. V(D)J Rearrangement Is Dispensable for Producing CDR-H3 Sequence Diversity in a Gene Converting Species. Front. Immunol. 2018, 9, 1317. [Google Scholar] [CrossRef]
- McCormack, W.T.; Tjoelker, L.W.; Thompson, C.B. Avian B-Cell Development: Generation of an Immunoglobulin Repertoire by Gene Conversion. Annu. Rev. Immunol. 1991, 9, 219–241. [Google Scholar] [CrossRef]
- Finlay, W.J.J.; Almagro, J.C. Natural and man-made V-gene repertoires for antibody discovery. Front. Immunol. 2012, 3, 342. [Google Scholar] [CrossRef]
- Vuong, C.N.; Reynolds, K.M.; Rivera, G.S.; Zeng, B.; Karimpourkalou, Z.; Norng, M.; Zhang, Y.; Chowdhury, R.; Pedersen, D.; Pantoja, M.; et al. Heavy chain-only antibodies with a stabilized human VH in transgenic chickens for therapeutic antibody discovery. mAbs 2024, 16, 2435476. [Google Scholar] [CrossRef]
- Leighton, P.A.; Ching, K.; Reynolds, K.; Vuong, C.N.; Zeng, B.; Zhang, Y.; Gupta, A.; Morales, J.; Rivera, G.S.; Srivastava, D.B.; et al. Chickens with a Truncated Light Chain Transgene Express Single-Domain H Chain-Only Antibodies. J. Immunol. 2024, 212, 1744–1753. [Google Scholar]
- Park, S.; Choi, J.; Lee, Y.; Noh, J.; Kim, N.; Lee, J.; Cho, G.; Kim, S.; Yoo, D.K.; Kang, C.K.; et al. An ancestral SARS-CoV-2 vaccine induces anti-Omicron variants antibodies by hypermutation. Nat. Commun. 2024, 15, 3368. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, H.; Chung, J. An antibody reactive to the Gly63–Lys68 epitope of NT-proBNP exhibits O-glycosylation-independent binding. Exp. Mol. Med. 2014, 46, e114. [Google Scholar] [CrossRef]
- Yang, H.; Chae, J.; Kim, H.; Noh, J.; Chung, J. Chicken Immunization followed by RNA Extraction and cDNA Synthesis for Antibody Library Preparation. Cold Spring Harb. Protoc. 2025, 2025, pdb.prot108568. [Google Scholar] [CrossRef]
- Yang, H.; Chae, J.; Kim, H.; Noh, J.; Chung, J. Generation of Chicken Antibody Libraries and Selection of Antigen Binders. Cold Spring Harb. Protoc. 2025, 2025, pdb.top108210. [Google Scholar] [CrossRef]
- Yang, H.; Chae, J.; Kim, H.; Noh, J.; Chung, J. Generation of a Phage Display Chicken Single-Chain Variable Fragment Library. Cold Spring Harb. Protoc. 2025, 2025, pdb.prot108213. [Google Scholar] [CrossRef]
- Yang, H.; Chae, J.; Kim, H.; Noh, J.; Chung, J. Selection of Antigen Binders from a Chicken Single-Chain Variable Fragment Library. Cold Spring Harb. Protoc. 2025, 2025, pdb.prot108211. [Google Scholar] [CrossRef]
- Yoon, A.; Shin, J.W.; Kim, S.; Kim, H.; Chung, J.; Gill, A.C. Chicken scFvs with an Artificial Cysteine for Site-Directed Conjugation. PLoS ONE 2016, 11, e0146907. [Google Scholar] [CrossRef]
- Jin, J.; Park, C.; Cho, S.-H.; Chung, J. The level of decoy epitope in PCV2 vaccine affects the neutralizing activity of sera in the immunized animals. Biochem. Biophys. Res. Commun. 2018, 496, 846–851. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 636, E4. [Google Scholar] [CrossRef]
- Kim, D.-S.; Song, H.-N.; Nam, H.J.; Kim, S.-G.; Park, Y.-S.; Park, J.-C.; Woo, E.-J.; Lim, H.-K.; Permyakov, E.A. Directed evolution of human heavy chain variable domain (VH) using in vivo protein fitness filter. PLoS ONE 2014, 9, e98178. [Google Scholar] [CrossRef][Green Version]
- Toughiri, R.; Wu, X.; Ruiz, D.; Huang, F.; Crissman, J.W.; Dickey, M.; Froning, K.; Conner, E.M.; Cujec, T.P.; Demarest, S.J. Comparing domain interactions within antibody Fabs with kappa and lambda light chains. mAbs 2016, 8, 1276–1285. [Google Scholar] [CrossRef]
- Chung, C.M.; Chiu, J.D.; Connors, L.H.; Gursky, O.; Lim, A.; Dykstra, A.B.; Liepnieks, J.; Benson, M.D.; Costello, C.E.; Skinner, M.; et al. Thermodynamic stability of a kappaI immunoglobulin light chain: Relevance to multiple myeloma. Biophys. J. 2005, 88, 4232–4242. [Google Scholar] [CrossRef]
- Kinoshita, S.; Nakakido, M.; Mori, C.; Kuroda, D.; Caaveiro, J.M.; Tsumoto, K. Molecular basis for thermal stability and affinity in a VHH: Contribution of the framework region and its influence in the conformation of the CDR3. Protein Sci. 2022, 31, e4450. [Google Scholar] [CrossRef]
- Frosi, Y.; Lin, Y.-C.; Shimin, J.; Ramlan, S.R.; Hew, K.; Engman, A.H.; Pillai, A.; Yeung, K.; Cheng, Y.X.; Cornvik, T.; et al. Engineering an autonomous VH domain to modulate intracellular pathways and to interrogate the eIF4F complex. Nat. Commun. 2022, 13, 4854. [Google Scholar] [CrossRef]
- Weber, B.; Brandl, M.J.; Cendales, M.D.P.; Berner, C.; Pradhan, T.; Feind, G.M.; Zacharias, M.; Reif, B.; Buchner, J. A single residue switch reveals principles of antibody domain integrity. J. Biol. Chem. 2018, 293, 17107–17118. [Google Scholar] [CrossRef]
- Booth, B.J.; Ramakrishnan, B.; Narayan, K.; Wollacott, A.M.; Babcock, G.J.; Shriver, Z.; Viswanathan, K. Extending human IgG half-life using structure-guided design. mAbs 2018, 10, 1098–1110. [Google Scholar] [CrossRef]
- Bélanger, K.; Wu, C.; Sulea, T.; van Faassen, H.; Callaghan, D.; Aubry, A.; Sasseville, M.; Hussack, G.; Tanha, J. Optimization of synthetic human V(H) affinity and solubility through in vitro affinity maturation and minimal camelization. Protein Sci. 2025, 34, e70114. [Google Scholar] [CrossRef]
- Lima, W.C.; Gasteiger, E.; Marcatili, P.; Duek, P.; Bairoch, A.; Cosson, P. The ABCD database: A repository for chemically defined antibodies. Nucleic Acids Res. 2020, 48, D261–D264. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Jin, J.; Kim, S.I.; Kang, M.J.; Yi, E.C.; Kim, J.E.; Park, J.B.; Kim, H.; Chung, J. A point mutation in the heavy chain complementarity-determining region 3 (HCDR3) significantly enhances the specificity of an anti-ROS1 antibody. Biochem. Biophys. Res. Commun. 2017, 493, 325–331. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Park, S.; Yang, H.; Cho, G.; Lee, S.Y.; Lee, D.; Tae, N.; Kim, D.H.; Chung, J. Development of a Chicken Immunoglobulin Heavy Chain Variable Region (VH) Single-Domain Antibody (sdAb) Against Calsequestrin (CSQ) and Its Application. Antibodies 2025, 14, 80. https://doi.org/10.3390/antib14030080
Lee S, Park S, Yang H, Cho G, Lee SY, Lee D, Tae N, Kim DH, Chung J. Development of a Chicken Immunoglobulin Heavy Chain Variable Region (VH) Single-Domain Antibody (sdAb) Against Calsequestrin (CSQ) and Its Application. Antibodies. 2025; 14(3):80. https://doi.org/10.3390/antib14030080
Chicago/Turabian StyleLee, Sun, Seoryeong Park, Hyunji Yang, Geummi Cho, Seung Youn Lee, Donggeun Lee, Nara Tae, Dae Hee Kim, and Junho Chung. 2025. "Development of a Chicken Immunoglobulin Heavy Chain Variable Region (VH) Single-Domain Antibody (sdAb) Against Calsequestrin (CSQ) and Its Application" Antibodies 14, no. 3: 80. https://doi.org/10.3390/antib14030080
APA StyleLee, S., Park, S., Yang, H., Cho, G., Lee, S. Y., Lee, D., Tae, N., Kim, D. H., & Chung, J. (2025). Development of a Chicken Immunoglobulin Heavy Chain Variable Region (VH) Single-Domain Antibody (sdAb) Against Calsequestrin (CSQ) and Its Application. Antibodies, 14(3), 80. https://doi.org/10.3390/antib14030080