Fragment-Based Immune Cell Engager Antibodies in Treatment of Cancer, Infectious and Autoimmune Diseases: Lessons and Insights from Clinical and Translational Studies
Abstract
1. Introduction
2. Harness the Incidence of Anti-Drug Antibody and Pharmacokinetics
2.1. Mechanism for the Incidence of Anti-Drug Antibody (ADA)
2.2. Pharmacokinetic Challenges and Solutions
2.2.1. Half-Life: Mostly Pro but Sometimes Con
2.2.2. Strategy to Improve Half-Life: Fc Fusion
2.2.3. Strategy to Improve Half-Life: Targeting Serum Albumin
3. Features of fbAb (Fragment-Based Antibody) Immune Cell Engager Platforms
4. T Cell Engagers (TCE)
4.1. T Cell Engagers in Cancer
4.1.1. fbAb TCE for Treating Hematological Malignancies
4.1.2. fbAb TCE for Treating Solid Tumor
4.1.3. Improving and Examining the Safety of TCE in Treating Solid Tumors
4.1.4. Targeting 4-1BB and CD28 in TCE Design
4.2. fbAb TCE in Treating Infectious Disease
4.2.1. fbAb TCE in Treating SARS-CoV-2 and Influenza (Pre-Clinical)
4.2.2. fbAb TCE in Treating HIV
4.2.3. fbAb TCE in Treating HBV
4.3. fbAb TCE in Autoimmune Disease
5. fbAb NK Cell Engagers (NKCE)
5.1. fbAb NKCE in Treating Cancer
5.2. fbAb NKCE in Treating Infectious Disease (Preclinical)
5.3. fbAb NKCE in Treating Autoimmune Disease
6. Myeloid Cell Engagers (MCE) and B Cell Engager (BCE)
6.1. MCE and BCE in Treating Cancer
6.2. MCE and BCE in Treating Infectious Disease
6.3. MCE and BCE in Treating Autoimmune Disease
7. Immune Checkpoint Blocker (ICB) and Immune Checkpoint Agonist (ICA)
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elshiaty, M.; Schindler, H.; Christopoulos, P. Principles and Current Clinical Landscape of Multispecific Antibodies against Cancer. Int. J. Mol. Sci. 2021, 22, 5632. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kang, G.; Yuan, H.; Cao, X.; Huang, H.; de Marco, A. Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Front. Immunol. 2021, 12, 838082. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Tian, C.; Feng, S.; Fida, G.; Zhang, C.; Ma, Y.; Ai, G.; Achilefu, S.; Gu, Y. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics 2015, 5, 378–398. [Google Scholar] [CrossRef] [PubMed]
- Larbouret, C.; Robert, B.; Navarro-Teulon, I.; Thèzenas, S.; Ladjemi, M.Z.; Morisseau, S.; Campigna, E.; Bibeau, F.; Mach, J.P.; Pèlegrin, A.; et al. In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas. Clin. Cancer Res. 2007, 13, 3356–3362. [Google Scholar] [CrossRef]
- Xu, Z.; Qiu, C.; Wen, B.; Wang, S.; Zhu, L.; Zhao, L.; Li, H. A bispecific nanobody targeting the dimerization interface of epidermal growth factor receptor: Evidence for tumor suppressive actions in vitro and in vivo. Biochem. Biophys. Res. Commun. 2021, 548, 78–83. [Google Scholar] [CrossRef]
- Vallera, D.A.; Oh, F.; Kodal, B.; Hinderlie, P.; Geller, M.A.; Miller, J.S.; Felices, M. A HER2 Tri-Specific NK Cell Engager Mediates Efficient Targeting of Human Ovarian Cancer. Cancers 2021, 13, 3994. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Q.; Fan, H.; Liao, C.; Zhang, J.; Hu, H.; Yi, H.; Peng, Y.; Lu, J.; Chen, Z. A Multivalent and Thermostable Nanobody Neutralizing SARS-CoV-2 Omicron (B.1.1.529). Int. J. Nanomed. 2023, 18, 353–367. [Google Scholar] [CrossRef]
- Henry, K.A.; MacKenzie, C.R. Antigen recognition by single-domain antibodies: Structural latitudes and constraints. MAbs 2018, 10, 815–826. [Google Scholar] [CrossRef]
- Schriek, A.I.; van Haaren, M.M.; Poniman, M.; Dekkers, G.; Bentlage, A.E.H.; Grobben, M.; Vidarsson, G.; Sanders, R.W.; Verrips, T.; Geijtenbeek, T.B.H.; et al. Anti-HIV-1 Nanobody-IgG1 Constructs with Improved Neutralization Potency and the Ability to Mediate Fc Effector Functions. Front. Immunol. 2022, 13, 893648. [Google Scholar] [CrossRef]
- Terryn, S.; Francart, A.; Rommelaere, H.; Stortelers, C.; Van Gucht, S. Post-exposure Treatment with Anti-rabies VHH and Vaccine Significantly Improves Protection of Mice from Lethal Rabies Infection. PLoS Negl. Trop. Dis. 2016, 10, e0004902. [Google Scholar] [CrossRef]
- Bessalah, S.; Jebahi, S.; Mejri, N.; Salhi, I.; Khorchani, T.; Hammadi, M. Perspective on therapeutic and diagnostic potential of camel nanobodies for coronavirus disease-19 (COVID-19). 3 Biotech. 2021, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, K.; Jung, S.; Conte, A.; Lieberman, J.; Muecksch, F.; Lorenzi, J.C.C.; Park, S.; Schmidt, F.; Wang, Z.; et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature 2021, 595, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther. 2022, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Haber, L.; Olson, K.; Kelly, M.P.; Crawford, A.; DiLillo, D.J.; Tavaré, R.; Ullman, E.; Mao, S.; Canova, L.; Sineshchekova, O.; et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci. Rep. 2021, 11, 14397. [Google Scholar] [CrossRef]
- Asaadi, Y.; Jouneghani, F.F.; Janani, S.; Rahbarizadeh, F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark. Res. 2021, 9, 87. [Google Scholar] [CrossRef]
- Binder, U.; Skerra, A. Strategies for extending the half-life of biotherapeutics: Successes and complications. Expert Opin. Biol. Ther. 2025, 25, 93–118. [Google Scholar] [CrossRef]
- Jones, G.B.; Collins, D.S.; Harrison, M.W.; Thyagarajapuram, N.R.; Wright, J.M. Subcutaneous drug delivery: An evolving enterprise. Sci. Transl. Med. 2017, 9, eaaf9166. [Google Scholar] [CrossRef]
- Vaisman-Mentesh, A.; Gutierrez-Gonzalez, M.; DeKosky, B.J.; Wine, Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment with Monoclonal Antibodies. Front. Immunol. 2020, 11, 1951. [Google Scholar] [CrossRef]
- Davda, J.; Declerck, P.; Hu-Lieskovan, S.; Hickling, T.P.; Jacobs, I.A.; Chou, J.; Salek-Ardakani, S.; Kraynov, E. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J. Immunother. Cancer 2019, 7, 105. [Google Scholar] [CrossRef]
- Shankar, G.; Arkin, S.; Cocea, L.; Devanarayan, V.; Kirshner, S.; Kromminga, A.; Quarmby, V.; Richards, S.; Schneider, C.K.; Subramanyam, M.; et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations. AAPS J. 2014, 16, 658–673. [Google Scholar] [CrossRef]
- Bots, S.J.; Parker, C.E.; Brandse, J.F.; Löwenberg, M.; Feagan, B.G.; Sandborn, W.J.; Jairath, V.; D’Haens, G.; Vande Casteele, N. Anti-Drug Antibody Formation Against Biologic Agents in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. BioDrugs 2021, 35, 715–733. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Nopsopon, T.; Akenroye, A. Incidence of Anti-Drug Antibodies to Monoclonal Antibodies in Asthma: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. Pract. 2023, 11, 1475–1484.e1420. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, R.; Chen, J.; Tian, W.; Xia, C.; Liu, X.; Li, Y.; Li, S.; Sun, H.; Shen, T.; et al. Next generation of anti-PD-L1 Atezolizumab with enhanced anti-tumor efficacy in vivo. Sci. Rep. 2021, 11, 5774. [Google Scholar] [CrossRef] [PubMed]
- Penny, H.L.; Hainline, K.; Theoharis, N.; Wu, B.; Brandl, C.; Webhofer, C.; McComb, M.; Wittemer-Rump, S.; Koca, G.; Stienen, S.; et al. Characterization and root cause analysis of immunogenicity to pasotuxizumab (AMG 212), a prostate-specific membrane antigen-targeting bispecific T-cell engager therapy. Front. Immunol. 2023, 14, 1261070. [Google Scholar] [CrossRef]
- Trivedi, A.; Stienen, S.; Zhu, M.; Li, H.; Yuraszeck, T.; Gibbs, J.; Heath, T.; Loberg, R.; Kasichayanula, S. Clinical Pharmacology and Translational Aspects of Bispecific Antibodies. Clin. Transl. Sci. 2017, 10, 147–162. [Google Scholar] [CrossRef]
- Friedrich, S.W.; Lin, S.C.; Stoll, B.R.; Baxter, L.T.; Munn, L.L.; Jain, R.K. Antibody-directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia 2002, 4, 449–463. [Google Scholar] [CrossRef]
- Sigmund, A.M.; Sahasrabudhe, K.D.; Bhatnagar, B. Evaluating Blinatumomab for the Treatment of Relapsed/Refractory ALL: Design, Development, and Place in Therapy. Blood Lymphat. Cancer 2020, 10, 7–20. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. BLINCYTO® (Blinatumomab) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/125557s029lbl.pdf (accessed on 18 June 2025).
- Budde, L.E.; Berger, C.; Lin, Y.; Wang, J.; Lin, X.; Frayo, S.E.; Brouns, S.A.; Spencer, D.M.; Till, B.G.; Jensen, M.C.; et al. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS ONE 2013, 8, e82742. [Google Scholar] [CrossRef]
- Tey, S.K.; Dotti, G.; Rooney, C.M.; Heslop, H.E.; Brenner, M.K. Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol. Blood Marrow Transpl. 2007, 13, 913–924. [Google Scholar] [CrossRef]
- Hoyos, V.; Savoldo, B.; Quintarelli, C.; Mahendravada, A.; Zhang, M.; Vera, J.; Heslop, H.E.; Rooney, C.M.; Brenner, M.K.; Dotti, G. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 2010, 24, 1160–1170. [Google Scholar] [CrossRef]
- Bucci, L.; Hagen, M.; Rothe, T.; Raimondo, M.G.; Fagni, F.; Tur, C.; Wirsching, A.; Wacker, J.; Wilhelm, A.; Auger, J.-P.; et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat. Med. 2024, 30, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Roopenian, D.C.; Akilesh, S. FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol. 2007, 7, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Garrido-Laguna, I.; Chen, X.; Basu, C.; Dowlati, A.; Forgie, A.; Hooper, A.T.; Kamperschroer, C.; Max, S.I.; Moreau, A.; et al. A Phase 1 Dose-Escalation Study of PF-06671008, a Bispecific T-Cell-Engaging Therapy Targeting P-Cadherin in Patients with Advanced Solid Tumors. Front. Immunol. 2022, 13, 845417. [Google Scholar] [CrossRef] [PubMed]
- Root, A.R.; Cao, W.; Li, B.; LaPan, P.; Meade, C.; Sanford, J.; Jin, M.; O’Sullivan, C.; Cummins, E.; Lambert, M.; et al. Development of PF-06671008, a Highly Potent Anti-P-cadherin/Anti-CD3 Bispecific DART Molecule with Extended Half-Life for the Treatment of Cancer. Antibodies 2016, 5, 6. [Google Scholar] [CrossRef]
- Luke, J.J.; Patel, M.R.; Blumenschein, G.R.; Hamilton, E.; Chmielowski, B.; Ulahannan, S.V.; Connolly, R.M.; Santa-Maria, C.A.; Wang, J.; Bahadur, S.W.; et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: A phase 1 trial. Nat. Med. 2023, 29, 2814–2824. [Google Scholar] [CrossRef]
- Luke, J.J.; Patel, M.R.; Hamilton, E.P.; Chmielowski, B.; Ulahannan, S.V.; Kindler, H.L.; Bahadur, S.W.; Clingan, P.R.; Mallesara, G.; Weickhardt, A.J.; et al. A phase I, first-in-human, open-label, dose-escalation study of MGD013, a bispecific DART molecule binding PD-1 and LAG-3, in patients with unresectable or metastatic neoplasms. J. Clin. Oncol. 2020, 38, 3004. [Google Scholar] [CrossRef]
- Luke, J.J.; Sharma, M.; Chandana, S.R.; Lugowska, I.A.; Szczylik, C.; Zolnierek, J.; Cote, G.M.; Mantia, C.; Dziadziuszko, R.; Sanborn, R.E.; et al. Lorigerlimab, a bispecific PD-1×CTLA-4 DART molecule in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC): A phase 1 expansion (exp) cohort. J. Clin. Oncol. 2023, 41, 155. [Google Scholar] [CrossRef]
- Sharma, M.; Sanborn, R.E.; Cote, G.M.; Bendell, J.C.; Kaul, S.; Chen, F.; Berezhnoy, A.; Moore, P.; Bonvini, E.; Sumrow, B.J.; et al. 1020O A phase I, first-in-human, open-label, dose escalation study of MGD019, an investigational bispecific PD-1 x CTLA-4 DART® molecule in patients with advanced solid tumours. Ann. Oncol. 2020, 31, S704–S705. [Google Scholar] [CrossRef]
- Montesinos, P.; Arnan, M.; De Botton, S.; Calbacho, M.; Rodriguez Veiga, R.; Bories, P.; Ansoleaga, B.; Hueso, T.; Daver, N.; Wunderle, L.; et al. Engaging Innate Immunity By AFM28, an Innate Cell Engager (ICE®) Targeting CD123-Positive Leukemic Cells in Patients with Relapsed/Refractory Acute Myeloid Leukemia: Safety and Efficacy Results of a First-in-Human Phase 1 Study. Blood 2024, 144, 738. [Google Scholar] [CrossRef]
- Topp, M.; Dlugosz-Danecka, M.; Skotnicki, A.B.; Salogub, G.; Viardot, A.; Klein, A.K.; Hess, G.; Michel, C.S.; Grosicki, S.; Gural, A.; et al. Safety of AFM11 in the treatment of patients with B-cell malignancies: Findings from two phase 1 studies. Trials 2023, 24, 4. [Google Scholar] [CrossRef]
- Reusch, U.; Duell, J.; Ellwanger, K.; Herbrecht, C.; Knackmuss, S.H.; Fucek, I.; Eser, M.; McAleese, F.; Molkenthin, V.; Gall, F.L.; et al. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19(+) tumor cells. MAbs 2015, 7, 584–604. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, N.L.; Herrera, A.F.; Domingo-Domenech, E.; Mehta, A.; Forero-Torres, A.; Garcia-Sanz, R.; Armand, P.; Devata, S.; Izquierdo, A.R.; Lossos, I.S.; et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2020, 136, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Bournazos, S.; Gupta, A.; Ravetch, J.V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 2020, 20, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M. Serum albumin: A pharmacokinetic marker for optimizing treatment outcome of immune checkpoint blockade. J. Immunother. Cancer 2022, 10, e005670. [Google Scholar] [CrossRef]
- Beltran, H.; Johnson, M.L.; Jain, P.; Schenk, E.L.; Sanborn, R.E.; Thompson, J.R.; Dowlati, A.; Mamdani, H.; Aggarwal, R.R.; Anand, B.S.; et al. Updated results from a phase 1/2 study of HPN328, a tri-specific, half-life (T1/2) extended DLL3-targeting T-cell engager in patients (pts) with small cell lung cancer (SCLC) and other neuroendocrine cancers (NEC). J. Clin. Oncol. 2024, 42, 8090. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Jimeno, A. Bispecific antibodies for cancer therapy: A review. Pharmacol. Ther. 2018, 185, 122–134. [Google Scholar] [CrossRef]
- Kang, J.; Sun, T.; Zhang, Y. Immunotherapeutic progress and application of bispecific antibody in cancer. Front. Immunol. 2022, 13, 1020003. [Google Scholar] [CrossRef]
- Cech, P.; Skórka, K.; Dziki, L.; Giannopoulos, K. T-Cell Engagers-The Structure and Functional Principle and Application in Hematological Malignancies. Cancers 2024, 16, 1580. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. KIMMTRAK® (tebentafusp-tebn) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761228s000lbl.pdf (accessed on 18 June 2025).
- Boudousquie, C.; Bossi, G.; Hurst, J.M.; Rygiel, K.A.; Jakobsen, B.K.; Hassan, N.J. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8(+) and CD4(+) T cells. Immunology 2017, 152, 425–438. [Google Scholar] [CrossRef]
- Bates, A.; Power, C.A. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies 2019, 8, 28. [Google Scholar] [CrossRef]
- Zaia, J.A. A New Agent in the Strategy to Cure AIDS. Mol. Ther. 2016, 24, 1894–1896. [Google Scholar] [CrossRef] [PubMed]
- Dart, R.C.; Bush, S.P.; Heard, K.; Arnold, T.C.; Sutter, M.; Campagne, D.; Holstege, C.P.; Seifert, S.A.; Lo, J.C.Y.; Quan, D.; et al. The Efficacy of Antivenin Latrodectus (Black Widow) Equine Immune F(ab’)(2) Versus Placebo in the Treatment of Latrodectism: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Ann. Emerg. Med. 2019, 74, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Lopardo, G.; Belloso, W.H.; Nannini, E.; Colonna, M.; Sanguineti, S.; Zylberman, V.; Muñoz, L.; Dobarro, M.; Lebersztein, G.; Farina, J.; et al. RBD-specific polyclonal F(ab’)(2) fragments of equine antibodies in patients with moderate to severe COVID-19 disease: A randomized, multicenter, double-blind, placebo-controlled, adaptive phase 2/3 clinical trial. eClinicalMedicine 2021, 34, 100843. [Google Scholar] [CrossRef]
- Gupta, D.; Ahmed, F.; Tandel, D.; Parthasarathy, H.; Vedagiri, D.; Sah, V.; Krishna Mohan, B.; Khan, R.A.; Kondiparthi, C.; Savari, P.; et al. Equine immunoglobulin fragment F(ab’)(2) displays high neutralizing capability against multiple SARS-CoV-2 variants. Clin. Immunol. 2022, 237, 108981. [Google Scholar] [CrossRef]
- Akiyoshi, D.E.; Sheoran, A.S.; Rich, C.M.; Richard, L.; Chapman-Bonofiglio, S.; Tzipori, S. Evaluation of Fab and F(ab’)2 fragments and isotype variants of a recombinant human monoclonal antibody against Shiga toxin 2. Infect. Immun. 2010, 78, 1376–1382. [Google Scholar] [CrossRef]
- Buist, M.R.; Kenemans, P.; den Hollander, W.; Vermorken, J.B.; Molthoff, C.J.M.; Burger, C.W.; Helmerhorst, T.J.M.; Baak, J.P.A.; Roos, J.C. Kinetics and Tissue Distribution of the Radiolabeled Chimeric Monoclonal Antibody MOv18 IgG and F(ab′)2 Fragments in Ovarian Carcinoma Patients1. Cancer Res. 1993, 53, 5413–5418. [Google Scholar]
- Ruppel, J.; Brady, A.; Elliott, R.; Leddy, C.; Palencia, M.; Coleman, D.; Couch, J.A.; Wakshull, E. Preexisting Antibodies to an F(ab’)2 Antibody Therapeutic and Novel Method for Immunogenicity Assessment. J. Immunol. Res. 2016, 2016, 2921758. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Yuan, R.; Dou, X.; Qian, N.; Pan, X.; Xu, G.; Xu, Q.; Dong, B.; Yang, C.; et al. XFab-α4-1BB/CD40L fusion protein activates dendritic cells, improves expansion of antigen-specific T cells, and exhibits antitumour efficacy in multiple solid tumour models. Cancer Immunol. Immunother. 2023, 72, 4015–4030. [Google Scholar] [CrossRef]
- Gauthier, L.; Morel, A.; Anceriz, N.; Rossi, B.; Blanchard-Alvarez, A.; Grondin, G.; Trichard, S.; Cesari, C.; Sapet, M.; Bosco, F.; et al. Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell 2019, 177, 1701–1713.e1716. [Google Scholar] [CrossRef]
- Demaria, O.; Habif, G.; Le Floch, F.; Chiossone, L.; Remark, R.; Vetizou, M.; Maurel, N.; Gauthier, L.; Morel, Y.; Paturel, C.; et al. IPH6501 Is a Novel NKp46-Targeting Tetraspecific Antibody-Based Natural Killer Cell Engager Therapeutic (ANKET) Armed with a Non-Alpha IL-2 Variant and Developed for the Treatment of CD20-Positive Malignancies. Blood 2022, 140, 11559. [Google Scholar] [CrossRef]
- Safran, H.; Cassier, P.A.; Vicier, C.; Forget, F.; Gomez-Roca, C.A.; Penel, N.; Campone, M.; Romano, E.; Valerin, J.B.; Jerusalem, G.H.M.; et al. Phase 1/2 Study of DF1001, a novel tri-specific, NK cell engager therapy targeting HER2, in patients with advanced solid tumors: Phase 1 DF1001 monotherapy dose-escalation results. J. Clin. Oncol. 2023, 41, 2508. [Google Scholar] [CrossRef]
- Pharma, I. Innate Pharma. Innate Pharma Shares Updated Results from the Sanofi Developed Blood Cancer Phase 1/2 SAR443579/IPH6101 Trial. Available online: https://www.innate-pharma.com/media/all-press-releases/innate-pharma-shares-updated-results-sanofi-developed-blood-cancer-phase-1/2-sar443579/iph6101-trial (accessed on 18 June 2025).
- Demaria, O.; Gauthier, L.; Vetizou, M.; Blanchard Alvarez, A.; Vagne, C.; Habif, G.; Batista, L.; Baron, W.; Belaïd, N.; Girard-Madoux, M.; et al. Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant. Cell Rep. Med. 2022, 3, 100783. [Google Scholar] [CrossRef] [PubMed]
- Austin, R.J.; Lemon, B.D.; Aaron, W.H.; Barath, M.; Culp, P.A.; DuBridge, R.B.; Evnin, L.B.; Jones, A.; Panchal, A.; Patnaik, P.; et al. TriTACs, a Novel Class of T-Cell–Engaging Protein Constructs Designed for the Treatment of Solid Tumors. Mol. Cancer Ther. 2021, 20, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Kwant, K.S.; Rocha, S.S.; Yu, T.; Stephenson, K.; Banzon, R.R.; Vollhardt, S.; Hemmati, G.; Callihan, E.; Aaron, W.H.; Thothathri, S.; et al. Abstract 2861: TriTAC-XR: An extended-release T cell engager platform designed to minimize cytokine release syndrome. Cancer Res. 2022, 82, 2861. [Google Scholar] [CrossRef]
- Kwant, K.; Rocha, S.; Stephenson, K.; Dayao, M.; Thothathri, S.; Banzon, R.; Aaron, W.; Hemmati, G.; Callihan, E.; Yu, T.; et al. 867 TriTAC-XR is an extended-release T cell engager platform designed to minimize cytokine release syndrome by reducing Cmax in systemic circulation. J. Immunother. Cancer 2021, 9, A908. [Google Scholar] [CrossRef]
- Stumpp, M.T.; Dawson, K.M.; Binz, H.K. Beyond Antibodies: The DARPin(®) Drug Platform. BioDrugs 2020, 34, 423–433. [Google Scholar] [CrossRef]
- Link, A.; Juglair, L.; Poulet, H.; Lemaillet, G.; Reichen, C.; Schildknecht, P.; Tosevski, I.; Robinson, J.; Veitonmäki, N.; Herbst, J.; et al. Abstract 2273: Selection of first-in-human clinical dose range for the tumor-targeted 4-1BB agonist MP0310 (AMG 506) using a pharmacokinetic/pharmacodynamics modeling approach. Cancer Res. 2020, 80, 2273. [Google Scholar] [CrossRef]
- Baird, R.; Omlin, A.; Kiemle-Kallee, J.; Fiedler, U.; Zitt, C.; Feurstein, D.; Herbst, J.; Dawson, K.; vom Baur, E.; Stumpp, M.; et al. Abstract OT1-03-02: MP0274-CP101: A phase 1, first-in-human, single-arm, multi-center, open-label, dose escalation study to assess safety, tolerability, and pharmacokinetics of MP0274 in patients with advanced HER2-positive solid tumors. Cancer Res. 2018, 78, OT1-03-02-OT01-03-02. [Google Scholar] [CrossRef]
- Baird, R.D.; Linossi, C.; Middleton, M.; Lord, S.; Harris, A.; Rodón, J.; Zitt, C.; Fiedler, U.; Dawson, K.M.; Leupin, N.; et al. First-in-Human Phase I Study of MP0250, a First-in-Class DARPin Drug Candidate Targeting VEGF and HGF, in Patients with Advanced Solid Tumors. J. Clin. Oncol. 2021, 39, 145–154. [Google Scholar] [CrossRef]
- Knop, S.; Szarejko, M.; Grząśko, N.; Bringhen, S.; Trautmann-Grill, K.; Jurczyszyn, A.; Vacca, A.; Khandanpour, C.; Gamberi, B.; Pour, L.; et al. A phase 1b/2 study evaluating efficacy and safety of MP0250, a designed ankyrin repeat protein (DARPin) simultaneously targeting vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), in combination with bortezomib and dexamethasone, in patients with relapsed or refractory multiple myeloma. eJHaem 2024, 5, 940–950. [Google Scholar] [CrossRef]
- Vallera, D.A.; Felices, M.; McElmurry, R.; McCullar, V.; Zhou, X.; Schmohl, J.U.; Zhang, B.; Lenvik, A.J.; Panoskaltsis-Mortari, A.; Verneris, M.R.; et al. IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clin. Cancer Res. 2016, 22, 3440–3450. [Google Scholar] [CrossRef] [PubMed]
- Felices, M.; Lenvik, T.R.; Kodal, B.; Lenvik, A.J.; Hinderlie, P.; Bendzick, L.E.; Schirm, D.K.; Kaminski, M.F.; McElmurry, R.T.; Geller, M.A.; et al. Potent Cytolytic Activity and Specific IL15 Delivery in a Second-Generation Trispecific Killer Engager. Cancer Immunol. Res. 2020, 8, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, D.; Brandt, L.; Felices, M.; Guldevall, K.; Lenvik, T.; Hinderlie, P.; Curtsinger, J.; Warlick, E.; Spellman, S.R.; Blazar, B.R.; et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv 2018, 2, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Felices, M.; Warlick, E.; Juckett, M.; Weisdorf, D.; Vallera, D.; Miller, S.; Wangen, R.; Lewis, D.; Knox, J.; Schroeder, M.; et al. 444 GTB-3550 tri-specific killer engager TriKE™ drives NK cells expansion and cytotoxicity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. J. Immunother. Cancer 2021, 9, A473. [Google Scholar] [CrossRef]
- Warlick, E.D.; Weisdorf, D.J.; Vallera, D.A.; Wangen, R.; Lewis, D.; Knox, J.; Schroeder, M.; Felices, M.; Miller, J.S. GTB-3550 TriKE™ for the Treatment of High-Risk Myelodysplastic Syndromes (MDS) and Refractory/Relapsed Acute Myeloid Leukemia (AML) Safely Drives Natural Killer (NK) Cell Proliferation At Initial Dose Cohorts. Blood 2020, 136, 7–8. [Google Scholar] [CrossRef]
- GT Biopharma, Inc. Utilizing Novel Camelid Nanobody Platform Technology with Target-Directed Immunotherapy for Cancer. November 2022. Available online: https://d1io3yog0oux5.cloudfront.net/gtbiopharma/files/pages/corporate-presentation/GT_Biopharma_Corporate_Presentation_NOV_2022_GTB_Website.pdf (accessed on 18 June 2025).
- Ackerman, S.E.; Pearson, C.I.; Gregorio, J.D.; Gonzalez, J.C.; Kenkel, J.A.; Hartmann, F.J.; Luo, A.; Ho, P.Y.; LeBlanc, H.; Blum, L.K.; et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat. Cancer 2021, 2, 18–33. [Google Scholar] [CrossRef]
- André, A.S.; Moutinho, I.; Dias, J.N.R.; Aires-da-Silva, F. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front. Microbiol. 2022, 13, 962124. [Google Scholar] [CrossRef]
- Rolin, C.; Zimmer, J.; Seguin-Devaux, C. Bridging the gap with multispecific immune cell engagers in cancer and infectious diseases. Cell. Mol. Immunol. 2024, 21, 643–661. [Google Scholar] [CrossRef]
- Baeuerle, P.A.; Wesche, H. T-cell-engaging antibodies for the treatment of solid tumors: Challenges and opportunities. Curr. Opin. Oncol. 2022, 34, 552–558. [Google Scholar] [CrossRef]
- Dustin, M.L. The immunological synapse. Cancer Immunol. Res. 2014, 2, 1023–1033. [Google Scholar] [CrossRef]
- Poussin, M.; Sereno, A.; Wu, X.; Huang, F.; Manro, J.; Cao, S.; Carpenito, C.; Glasebrook, A.; Powell, D.J., Jr.; Demarest, S. Dichotomous impact of affinity on the function of T cell engaging bispecific antibodies. J. Immunother. Cancer 2021, 9, e002444. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Hotchkiss, K.M.; Mohan, A.A.; Reedy, J.L.; Sampson, J.H.; Khasraw, M. For whom the T cells troll? Bispecific T-cell engagers in glioblastoma. J. Immunother. Cancer 2021, 9, e003679. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.C.; Shah, N.N. CAR T cells better than BiTEs. Blood Adv. 2021, 5, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Subklewe, M. BiTEs better than CAR T cells. Blood Adv. 2021, 5, 607–612. [Google Scholar] [CrossRef]
- Evans, M.; Guest, R.; Rothwell, D.; Burt, D.; Kirillova, N.; Haughton, J.; Chow, S.; Thistlethwaite, F.; Gilham, D.; Hawkins, R. First generation anti-CD19 chimeric antigen receptor-modified T cells for management of B cell malignances: Initial analysis of an ongoing Phase I clinical trial. J. Immunother. Cancer 2014, 2, 12. [Google Scholar] [CrossRef]
- Jabbour, E.; Zugmaier, G.; Agrawal, V.; Martínez-Sánchez, P.; Rifón Roca, J.J.; Cassaday, R.D.; Böll, B.; Rijneveld, A.; Abdul-Hay, M.; Huguet, F.; et al. Single agent subcutaneous blinatumomab for advanced acute lymphoblastic leukemia. Am. J. Hematol. 2024, 99, 586–595. [Google Scholar] [CrossRef]
- Khalili, J.S.; Xiao, S.; Zhu, Y. Abstract 5679: Tetra-specific antibody GNC-035: Guidance and navigation control (GNC) molecule development for treatment of ROR1+ malignancies. Cancer Res. 2023, 83, 5679. [Google Scholar] [CrossRef]
- Wang, J.; Qi, J.; Li, W.; Zhai, Z.; Li, P.; Zou, W.; Ding, M.; Yang, X.; Wang, R.; Guo, W.; et al. GNC-038, a tetra-specific antibody, in patients with R/R non-Hodgkin lymphoma or acute lymphoblastic leukemia: A phase 1 study design and rationale. J. Clin. Oncol. 2023, 41, TPS2668. [Google Scholar] [CrossRef]
- Thieblemont, C.; Phillips, T.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Do, Y.R.; Feldman, T.; Gasiorowski, R.; Jurczak, W.; et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J. Clin. Oncol. 2023, 41, 2238–2247. [Google Scholar] [CrossRef]
- Gibson, A.; Nunez, C.; Robusto, L.; Kammerer, B.; Garcia, M.; Roth, M.; Sheth, R.; Tewari, P.; Hittle, A.; Toepfer, L.; et al. Combination low-intensity chemotherapy plus inotuzumab ozogamicin, blinatumomab and rituximab for pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia. Haematologica 2024, 109, 3042–3047. [Google Scholar] [CrossRef]
- Cords, L.; Schaefers, C.; Kamili, A.; Hoffmann, C.; Cichutek, S.; Haag, F.; Polywka, S.; Bokemeyer, C.; Leypoldt, L.; Alsdorf, W.; et al. BCMA x CD3 T-cell engager in a patient with pentarefractory multiple myeloma and HIV: A clinical and immunological report. Haematologica 2024, 109, 3071–3077. [Google Scholar] [CrossRef] [PubMed]
- Géraud, A.; Hueso, T.; Laparra, A.; Bige, N.; Ouali, K.; Cauquil, C.; Stoclin, A.; Danlos, F.-X.; Hollebecque, A.; Ribrag, V.; et al. Reactions and adverse events induced by T-cell engagers as anti-cancer immunotherapies, a comprehensive review. Eur. J. Cancer 2024, 205, 114075. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xi, R.; Mao, D.; Zhao, X.; Wu, T. Efficacy and Safety of Blinatumomab for the Treatment of Relapsed/Refractory Acute Lymphoblastic Leukemia: A Systemic Review and Meta-Analysis. Clin. Lymphoma Myeloma Leuk. 2023, 23, e139–e149. [Google Scholar] [CrossRef]
- Chen, B.; Zou, Z.; Zhang, Q.; Chen, K.; Zhang, X.; Xiao, D.; Li, X. Efficacy and safety of blinatumomab in children with relapsed/refractory B cell acute lymphoblastic leukemia: A systematic review and meta-analysis. Front. Pharmacol. 2023, 13, 1032664. [Google Scholar] [CrossRef]
- Aamir, S.; Anwar, M.Y.; Khalid, F.; Khan, S.I.; Ali, M.A.; Khattak, Z.E. Systematic Review and Meta-analysis of CD19-Specific CAR-T Cell Therapy in Relapsed/Refractory Acute Lymphoblastic Leukemia in the Pediatric and Young Adult Population: Safety and Efficacy Outcomes. Clin. Lymphoma Myeloma Leuk. 2021, 21, e334–e347. [Google Scholar] [CrossRef]
- Philipp, N.; Kazerani, M.; Nicholls, A.; Vick, B.; Wulf, J.; Straub, T.; Scheurer, M.; Muth, A.; Hänel, G.; Nixdorf, D.; et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 2022, 140, 1104–1118. [Google Scholar] [CrossRef]
- Ahamadi-Fesharaki, R.; Fateh, A.; Vaziri, F.; Solgi, G.; Siadat, S.D.; Mahboudi, F.; Rahimi-Jamnani, F. Single-Chain Variable Fragment-Based Bispecific Antibodies: Hitting Two Targets with One Sophisticated Arrow. Mol. Ther. Oncolytics 2019, 14, 38–56. [Google Scholar] [CrossRef]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti–B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Costello, C.L.; Raje, N.S.; Levy, M.Y.; Dholaria, B.; Solh, M.; Tomasson, M.H.; Damore, M.A.; Jiang, S.; Basu, C.; et al. Elranatamab in relapsed or refractory multiple myeloma: The MagnetisMM-1 phase 1 trial. Nat. Med. 2023, 29, 2570–2576. [Google Scholar] [CrossRef]
- Ravandi, F.; Stein, A.S.; Kantarjian, H.M.; Walter, R.B.; Paschka, P.; Jongen-Lavrencic, M.; Ossenkoppele, G.J.; Yang, Z.; Mehta, B.; Subklewe, M. A Phase 1 First-in-Human Study of AMG 330, an Anti-CD33 Bispecific T-Cell Engager (BiTE®) Antibody Construct, in Relapsed/Refractory Acute Myeloid Leukemia (R/R AML). Blood 2018, 132, 25. [Google Scholar] [CrossRef]
- Uy, G.L.; Aldoss, I.; Foster, M.C.; Sayre, P.H.; Wieduwilt, M.J.; Advani, A.S.; Godwin, J.E.; Arellano, M.L.; Sweet, K.L.; Emadi, A.; et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021, 137, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Chichili, G.R.; Huang, L.; Li, H.; Burke, S.; He, L.; Tang, Q.; Jin, L.; Gorlatov, S.; Ciccarone, V.; Chen, F.; et al. A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: Preclinical activity and safety in nonhuman primates. Sci. Transl. Med. 2015, 7, 289ra282. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N. MacroGenics Switches Horses in CD123 Race, Canning Flotetuzumab in Favor of Next-Gen Successor. Available online: https://www.fiercebiotech.com/biotech/macrogenics-switches-horses-cd123-race-canning-flotetuzumab-favor-next-gen-successor (accessed on 18 June 2025).
- Winer, E.S.; Maris, M.; Sharma, M.R.; Kaminker, P.; Zhao, E.; Ward, A.; Sochacki, A.L. A Phase 1, First-in-Human, Dose-Escalation Study of MGD024, a CD123xCD3 Bispecific Dart® Molecule, in Patients with Relapsed or Refractory CD123-Positive (+) Hematologic Malignancies. Blood 2022, 140, 11753–11754. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Cho, B.C.; Felip, E.; Korantzis, I.; Ohashi, K.; Majem, M.; Juan-Vidal, O.; Handzhiev, S.; Izumi, H.; Lee, J.-S.; et al. Tarlatamab for Patients with Previously Treated Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 2063–2075. [Google Scholar] [CrossRef]
- Hoffman, L.M.; Gore, L. Blinatumomab, a Bi-Specific Anti-CD19/CD3 BiTE(®) Antibody for the Treatment of Acute Lymphoblastic Leukemia: Perspectives and Current Pediatric Applications. Front. Oncol. 2014, 4, 63. [Google Scholar] [CrossRef]
- Chou, J.; Egusa, E.A.; Wang, S.; Badura, M.L.; Lee, F.; Bidkar, A.P.; Zhu, J.; Shenoy, T.; Trepka, K.; Robinson, T.M.; et al. Immunotherapeutic Targeting and PET Imaging of DLL3 in Small-Cell Neuroendocrine Prostate Cancer. Cancer Res. 2023, 83, 301–315. [Google Scholar] [CrossRef]
- Giffin, M.J.; Cooke, K.; Lobenhofer, E.K.; Estrada, J.; Zhan, J.; Deegen, P.; Thomas, M.; Murawsky, C.M.; Werner, J.; Liu, S.; et al. AMG 757, a Half-Life Extended, DLL3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small-Cell Lung Cancer. Clin. Cancer Res. 2021, 27, 1526–1537. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Champiat, S.; Lai, W.V.; Izumi, H.; Govindan, R.; Boyer, M.; Hummel, H.D.; Borghaei, H.; Johnson, M.L.; Steeghs, N.; et al. Tarlatamab, a First-in-Class DLL3-Targeted Bispecific T-Cell Engager, in Recurrent Small-Cell Lung Cancer: An Open-Label, Phase I Study. J. Clin. Oncol. 2023, 41, 2893–2903. [Google Scholar] [CrossRef]
- Dreier, T.; Lorenczewski, G.; Brandl, C.; Hoffmann, P.; Syring, U.; Hanakam, F.; Kufer, P.; Riethmuller, G.; Bargou, R.; Baeuerle, P.A. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int. J. Cancer 2002, 100, 690–697. [Google Scholar] [CrossRef]
- Hodgson, J. Reality Bites Again for Amgen. Available online: https://www.oncologypipeline.com/apexonco/reality-bites-again-amgen (accessed on 18 June 2025).
- Hummel, H.-D.; Kufer, P.; Grüllich, C.; Deschler-Baier, B.; Chatterjee, M.; Goebeler, M.-E.; Miller, K.; Santis, M.D.; Loidl, W.C.; Buck, A.; et al. Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting Bispecific T cell Engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2019, 37, 5034. [Google Scholar] [CrossRef]
- Oberst, M.D.; Fuhrmann, S.; Mulgrew, K.; Amann, M.; Cheng, L.; Lutterbuese, P.; Richman, L.; Coats, S.; Baeuerle, P.A.; Hammond, S.A. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas. MAbs 2014, 6, 1571–1584. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, M.A.; Balana, C.; van Linde, M.E.; Sayehli, C.; Fiedler, W.M.; Wermke, M.; Massard, C.; Mellinghoff, I.K.; Khasraw, M.; Ang, A.; et al. ATIM-49 (LTBK-01). AMG 596, A Novel Anti-egfrviii Bispecific T Cell Engager (Bite(®)) Molecule for the Treatment of Glioblastoma (Gbm): Planned Interim Analysis in Recurrent Gbm (Rgbm). Neuro Oncol. 2019, 21, vi283. [Google Scholar] [CrossRef]
- Bono, J.S.D.; Fong, L.; Beer, T.M.; Gao, X.; Geynisman, D.M.; III, H.A.B.; Strauss, J.F.; Courtney, K.D.; Quinn, D.I.; VanderWeele, D.J.; et al. Results of an ongoing phase 1/2a dose escalation study of HPN424, a tri-specific half-life extended PSMA-targeting T-cell engager, in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2021, 39, 5013. [Google Scholar] [CrossRef]
- Gorges, T.M.; Riethdorf, S.; von Ahsen, O.; Nastał, Y.P.; Röck, K.; Boede, M.; Peine, S.; Kuske, A.; Schmid, E.; Kneip, C.; et al. Heterogeneous PSMA expression on circulating tumor cells: A potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer. Oncotarget 2016, 7, 34930–34941. [Google Scholar] [CrossRef]
- Molloy, M.E.; Austin, R.J.; Lemon, B.D.; Aaron, W.H.; Ganti, V.; Jones, A.; Jones, S.D.; Strobel, K.L.; Patnaik, P.; Sexton, K.; et al. Preclinical Characterization of HPN536, a Trispecific, T-Cell–Activating Protein Construct for the Treatment of Mesothelin-Expressing Solid Tumors. Clin. Cancer Res. 2021, 27, 1452–1462. [Google Scholar] [CrossRef]
- Molloy, M.E.; Aaron, W.H.; Barath, M.; Bush, M.C.; Callihan, E.C.; Carlin, K.; Cremin, M.; Evans, T.; Guerrero, M.G.; Hemmati, G.; et al. HPN328, a Trispecific T Cell–Activating Protein Construct Targeting DLL3-Expressing Solid Tumors. Mol. Cancer Ther. 2024, 23, 1294–1304. [Google Scholar] [CrossRef]
- Middelburg, J.; Kemper, K.; Engelberts, P.; Labrijn, A.F.; Schuurman, J.; van Hall, T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers 2021, 13, 287. [Google Scholar] [CrossRef]
- Wang, L.; Hoseini, S.S.; Xu, H.; Ponomarev, V.; Cheung, N.K. Silencing Fc Domains in T cell-Engaging Bispecific Antibodies Improves T-cell Trafficking and Antitumor Potency. Cancer Immunol. Res. 2019, 7, 2013–2024. [Google Scholar] [CrossRef]
- Labrijn, A.F.; Meesters, J.I.; Bunce, M.; Armstrong, A.A.; Somani, S.; Nesspor, T.C.; Chiu, M.L.; Altintaş, I.; Verploegen, S.; Schuurman, J.; et al. Efficient Generation of Bispecific Murine Antibodies for Pre-Clinical Investigations in Syngeneic Rodent Models. Sci. Rep. 2017, 7, 2476. [Google Scholar] [CrossRef]
- Vaks, L.; Litvak-Greenfeld, D.; Dror, S.; Shefet-Carasso, L.; Matatov, G.; Nahary, L.; Shapira, S.; Hakim, R.; Alroy, I.; Benhar, I. Design Principles for Bispecific IgGs, Opportunities and Pitfalls of Artificial Disulfide Bonds. Antibodies 2018, 7, 27. [Google Scholar] [CrossRef]
- Kang, T.H.; Jung, S.T. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp. Mol. Med. 2019, 51, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kebenko, M.; Goebeler, M.E.; Wolf, M.; Hasenburg, A.; Seggewiss-Bernhardt, R.; Ritter, B.; Rautenberg, B.; Atanackovic, D.; Kratzer, A.; Rottman, J.B.; et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology 2018, 7, e1450710. [Google Scholar] [CrossRef] [PubMed]
- Amann, M.; Brischwein, K.; Lutterbuese, P.; Parr, L.; Petersen, L.; Lorenczewski, G.; Krinner, E.; Bruckmeier, S.; Lippold, S.; Kischel, R.; et al. Therapeutic Window of MuS110, a Single-Chain Antibody Construct Bispecific for Murine EpCAM and Murine CD3. Cancer Res. 2008, 68, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Schlereth, B.; Lorenczewski, G.; Friedrich, M.; Lutterbuese, P.; Lutterbuese, R.; Kischel, R.; Kufer, P.; Baeuerle, P.; Wolf, A. Feasibility of repeated subcutaneous delivery supports a new route of administration for treating cancer patients with EpCAM-specific BiTE antibody MT110. Cancer Res. 2008, 68, 2403. [Google Scholar]
- Kerns, S.J.; Belgur, C.; Petropolis, D.; Kanellias, M.; Barrile, R.; Sam, J.; Weinzierl, T.; Fauti, T.; Freimoser-Grundschober, A.; Eckmann, J.; et al. Human immunocompetent Organ-on-Chip platforms allow safety profiling of tumor-targeted T-cell bispecific antibodies. Elife 2021, 10, e67106. [Google Scholar] [CrossRef]
- Dian, Y.; Liu, Y.; Zeng, F.; Sun, Y.; Deng, G. Efficacy and safety of tebentafusp in patients with metastatic uveal melanoma: A systematic review and meta-analysis. Hum. Vaccin. Immunother. 2024, 20, 2374647. [Google Scholar] [CrossRef]
- Piulats, J.M.; Watkins, C.; Costa-García, M.; Del Carpio, L.; Piperno-Neumann, S.; Rutkowski, P.; Hassel, J.C.; Espinosa, E.; de la Cruz-Merino, L.; Ochsenreither, S.; et al. Overall survival from tebentafusp versus nivolumab plus ipilimumab in first-line metastatic uveal melanoma: A propensity score-weighted analysis. Ann. Oncol. 2024, 35, 317–326. [Google Scholar] [CrossRef]
- Carvajal, R.D.; Butler, M.O.; Shoushtari, A.N.; Hassel, J.C.; Ikeguchi, A.; Hernandez-Aya, L.; Nathan, P.; Hamid, O.; Piulats, J.M.; Rioth, M.; et al. Clinical and molecular response to tebentafusp in previously treated patients with metastatic uveal melanoma: A phase 2 trial. Nat. Med. 2022, 28, 2364–2373. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Multi-Discipline Review: Biologics License Application (BLA) 761228 (tebenta-fusp-tebn). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/761228Orig1s000MultidisciplineR.pdf (accessed on 18 June 2025).
- Chen, L.N.; Carvajal, R.D. Tebentafusp for the treatment of HLA-A*02:01-positive adult patients with unresectable or metastatic uveal melanoma. Expert Rev. Anticancer Ther. 2022, 22, 1017–1027. [Google Scholar] [CrossRef]
- Martinez-Perez, D.; Viñal, D.; Solares, I.; Espinosa, E.; Feliu, J. Gp-100 as a Novel Therapeutic Target in Uveal Melanoma. Cancers 2021, 13, 5968. [Google Scholar] [CrossRef]
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.P.; Araujo, D.M.; Abdul Razak, A.R.; Agulnik, M.; Attia, S.; Blay, J.-Y.; Carrasco Garcia, I.; Charlson, J.A.; Choy, E.; Demetri, G.D.; et al. Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): An international, open-label, phase 2 trial. Lancet 2024, 403, 1460–1471. [Google Scholar] [CrossRef] [PubMed]
- Low, L.; Goh, A.; Koh, J.; Lim, S.; Wang, C.I. Targeting mutant p53-expressing tumours with a T cell receptor-like antibody specific for a wild-type antigen. Nat. Commun. 2019, 10, 5382. [Google Scholar] [CrossRef] [PubMed]
- Hsiue, E.H.; Wright, K.M.; Douglass, J.; Hwang, M.S.; Mog, B.J.; Pearlman, A.H.; Paul, S.; DiNapoli, S.R.; Konig, M.F.; Wang, Q.; et al. Targeting a neoantigen derived from a common TP53 mutation. Science 2021, 371, 1009. [Google Scholar] [CrossRef]
- Chai, D.; Wang, J.; Fan, C.; Lim, J.M.; Wang, X.; Neeli, P.; Yu, X.; Young, K.H.; Li, Y. Remodeling of anti-tumor immunity with antibodies targeting a p53 mutant. J. Hematol. Oncol. 2024, 17, 45, s13045–s14024. [Google Scholar] [CrossRef]
- Du, J.; Tang, W.; Jiao, X.; Zhao, L.; Du, P.; Zhang, Y.; Bao, J.; Chen, H.; Guo, C.; An, W.F. Abstract 6717: Targeting mutant KRAS proteins with novel TCR-mimic fully human antibodies. Cancer Res. 2024, 84, 6717. [Google Scholar] [CrossRef]
- Du, J.; Tang, W.; Jiao, X.; Zhao, L.; Du, P.; Zhang, Y.; Zhang, Y.; Chen, H.; Bao, J.; Niu, A.; et al. 1168 Identification of fully human TCR-mimic antibodies targeting the KRAS G12V/HLA complex generated in HLA-transgenic RenMabTM mice. J. Immunother. Cancer 2023, 11, A1287. [Google Scholar] [CrossRef]
- Duan, Z.; Ho, M. Targeting the cancer neoantigens p53 and KRAS with TCR mimic antibodies. Antib. Ther. 2021, 4, 208–211. [Google Scholar] [CrossRef]
- Hamid, O.; Williams, A.; Lopez, J.S.; Olson, D.; Sato, T.; Shaw, H.M.; Friedman, C.F.; Thistlethwaite, F.; Middleton, M.R.; Lebbe, C.; et al. Phase 1 safety and efficacy of IMC-F106C, a PRAME × CD3 ImmTAC bispecific, in post-checkpoint cutaneous melanoma (CM). J. Clin. Oncol. 2024, 42, 9507. [Google Scholar] [CrossRef]
- Roche, N.T. Seeing MAGE Magic Wane, Punts Pair of Solid Tumor Bispecifics, Makes $490M Bets Disappear. Fierce Biotech [Internet]. 2023. Available online: https://www.fiercebiotech.com/biotech/roche-seeing-mage-magic-wane-punts-pair-solid-tumor-bispecifics-makes-490m-bets-disappear (accessed on 10 May 2025).
- Warmuth, S.; Gunde, T.; Snell, D.; Brock, M.; Weinert, C.; Simonin, A.; Hess, C.; Tietz, J.; Johansson, M.; Spiga, F.M.; et al. Engineering of a trispecific tumor-targeted immunotherapy incorporating 4-1BB co-stimulation and PD-L1 blockade. Oncoimmunology 2021, 10, 2004661. [Google Scholar] [CrossRef]
- Luke, J.; Johnson, M.; Gadgeel, S.; Spira, A.; Yang, J.; Johnson, J.; Losch-Beridon, T.; Snell, D.; Warmuth, S.; Cleaver, M.; et al. 732 First-in-human trial to evaluate safety, PK/PD and initial clinical activity of NM21–1480, an affinity-balanced PD-L1x4–1BBxHSA trispecific antibody: Results of phase 1 dose escalation. J. Immunother. Cancer 2022, 10, A764. [Google Scholar] [CrossRef]
- Chin, S.M.; Kimberlin, C.R.; Roe-Zurz, Z.; Zhang, P.; Xu, A.; Liao-Chan, S.; Sen, D.; Nager, A.R.; Oakdale, N.S.; Brown, C.; et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat. Commun. 2018, 9, 4679. [Google Scholar] [CrossRef] [PubMed]
- Vanamee, É.S.; Faustman, D.L. Structural principles of tumor necrosis factor superfamily signaling. Sci. Signal 2018, 11, eaao4910. [Google Scholar] [CrossRef]
- Muik, A.; Garralda, E.; Altintas, I.; Gieseke, F.; Geva, R.; Ben-Ami, E.; Maurice-Dror, C.; Calvo, E.; LoRusso, P.M.; Alonso, G.; et al. Preclinical Characterization and Phase I Trial Results of a Bispecific Antibody Targeting PD-L1 and 4-1BB (GEN1046) in Patients with Advanced Refractory Solid Tumors. Cancer Discov. 2022, 12, 1248–1265. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Z.; Jiang, W.; Zhang, Y.; Meng, Z.; Niu, Y.; Sheng, Z.; Chen, C.; Liu, X.; Chen, X.; et al. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation. J. Immunother. Cancer 2023, 11, e006704. [Google Scholar] [CrossRef]
- Correnti, C.E.; Laszlo, G.S.; de van der Schueren, W.J.; Godwin, C.D.; Bandaranayake, A.; Busch, M.A.; Gudgeon, C.J.; Bates, O.M.; Olson, J.M.; Mehlin, C.; et al. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia 2018, 32, 1239–1243. [Google Scholar] [CrossRef]
- Bourgeois, S.; Lim, Y.S.; Gane, E.J.; Lee, H.W.; Cheng, W.; Heo, J.; Kim, W.; Buti, M.; Thompson, A.; Matthews, G.; et al. IMC-I109V, a novel T cell receptor (TCR) bispecific (ENVxCD3) designed to eliminate HBV-infected hepatocytes in chronic HBV patients: Initial data from a first-in-human study. Poster Presentation (SAT437). In The International Liver Congress 2022, 22-26 June 2022. J. Hepatol. 2022, 77, S872. [Google Scholar] [CrossRef]
- Zheng, J.-R.; Wang, Z.-L.; Feng, B. Hepatitis B functional cure and immune response. Front. Immunol. 2022, 13, 1075916. [Google Scholar] [CrossRef]
- Yang, H.; Buisson, S.; Bossi, G.; Wallace, Z.; Hancock, G.; So, C.; Ashfield, R.; Vuidepot, A.; Mahon, T.; Molloy, P.; et al. Elimination of Latently HIV-infected Cells from Antiretroviral Therapy-suppressed Subjects by Engineered Immune-mobilizing T-cell Receptors. Mol. Ther. 2016, 24, 1913–1925. [Google Scholar] [CrossRef]
- Immunocore. Immunocore Announces Initial Phase 1 Safety and Pharmacodynamic Activity Data with First Soluble TCR Therapy for People Living with HIV. 2023. Available online: https://www.immunocore.com/investors/news/press-releases/detail/15/immunocore-announces-initial-phase-1-safety-and-pharmacodynamic-activity-data-with-first-soluble-tcr-therapy-for-people-living-with-hiv (accessed on 11 May 2025).
- Lee, C.M.; Choe, P.G.; Kang, C.K.; Jo, H.J.; Kim, N.J.; Yoon, S.S.; Kim, T.M.; Park, W.B.; Oh, M.D. Impact of T-Cell Engagers on COVID-19-Related Mortality in B-Cell Lymphoma Patients Receiving B-Cell Depleting Therapy. Cancer Res. Treat. 2024, 56, 324–333. [Google Scholar] [CrossRef]
- Kang, S.; Brown, H.M.; Hwang, S. Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw. 2018, 18, e33. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int. Rev. Immunol. 2009, 28, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Dhatchinamoorthy, K.; Colbert, J.D.; Rock, K.L. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front. Immunol. 2021, 12, 636568. [Google Scholar] [CrossRef] [PubMed]
- Mihaescu, G.; Chifiriuc, M.C.; Filip, R.; Bleotu, C.; Ditu, L.M.; Constantin, M.; Cristian, R.E.; Grigore, R.; Bertesteanu, S.V.; Bertesteanu, G.; et al. Role of interferons in the antiviral battle: From virus-host crosstalk to prophylactic and therapeutic potential in SARS-CoV-2 infection. Front. Immunol. 2023, 14, 1273604. [Google Scholar] [CrossRef]
- Teachey, D.T.; Rheingold, S.R.; Maude, S.L.; Zugmaier, G.; Barrett, D.M.; Seif, A.E.; Nichols, K.E.; Suppa, E.K.; Kalos, M.; Berg, R.A.; et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 2013, 121, 5154–5157. [Google Scholar] [CrossRef]
- Chen, L.Y.; Kothari, J. Supportive care measures for bispecific T-cell engager therapies in haematological malignancies. Curr. Opin. Support. Palliat. Care 2024, 18, 92–99. [Google Scholar] [CrossRef]
- Dogan, M.; Kozhaya, L.; Placek, L.; Karabacak, F.; Yigit, M.; Unutmaz, D. Targeting SARS-CoV-2 infection through CAR-T-like bispecific T cell engagers incorporating ACE2. Clin. Transl. Immunol. 2022, 11, e1421. [Google Scholar] [CrossRef]
- Busca, A.; Salmanton-García, J.; Corradini, P.; Marchesi, F.; Cabirta, A.; Di Blasi, R.; Dulery, R.; Lamure, S.; Farina, F.; Weinbergerová, B.; et al. COVID-19 and CAR T cells: A report on current challenges and future directions from the EPICOVIDEHA survey by EHA-IDWP. Blood Adv. 2022, 6, 2427–2433. [Google Scholar] [CrossRef]
- Hong, R.; Zhao, H.; Wang, Y.; Chen, Y.; Cai, H.; Hu, Y.; Wei, G.; Huang, H. Clinical characterization and risk factors associated with cytokine release syndrome induced by COVID-19 and chimeric antigen receptor T-cell therapy. Bone Marrow Transplant. 2021, 56, 570–580. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Wu, S.; Chen, S.; Li, Y.; Nong, L.; Lie, P.; Huang, L.; Cheng, L.; Lin, Y.; et al. Definition and Risks of Cytokine Release Syndrome in 11 Critically Ill COVID-19 Patients with Pneumonia: Analysis of Disease Characteristics. J. Infect. Dis. 2020, 222, 1444–1451. [Google Scholar] [CrossRef]
- Desai, P.J. Expression and fusogenic activity of SARS CoV-2 Spike protein displayed in the HSV-1 Virion. bioRxiv 2023. [Google Scholar] [CrossRef]
- Pizzato, M.; Baraldi, C.; Boscato Sopetto, G.; Finozzi, D.; Gentile, C.; Gentile, M.D.; Marconi, R.; Paladino, D.; Raoss, A.; Riedmiller, I.; et al. SARS-CoV-2 and the Host Cell: A Tale of Interactions. Front. Virol. 2022, 1, 815388. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xu, W.; Zhang, X.; Wang, W.; Su, S.; Han, P.; Wang, H.; Xu, Y.; Li, M.; Fan, L.; et al. A spike-targeting bispecific T cell engager strategy provides dual layer protection against SARS-CoV-2 infection in vivo. Commun. Biol. 2023, 6, 592. [Google Scholar] [CrossRef]
- Quiñones-Parra, S.M.; Gras, S.; Nguyen, T.H.O.; Farenc, C.; Szeto, C.; Rowntree, L.C.; Chaurasia, P.; Sant, S.; Boon, A.C.M.; Jayasinghe, D.; et al. Molecular determinants of cross-strain influenza A virus recognition by αβ T cell receptors. Sci. Immunol. 2025, 10, eadn3805. [Google Scholar] [CrossRef]
- Deeks, S.G.; Archin, N.; Cannon, P.; Collins, S.; Jones, R.B.; de Jong, M.A.W.P.; Lambotte, O.; Lamplough, R.; Ndung’u, T.; Sugarman, J.; et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat. Med. 2021, 27, 2085–2098. [Google Scholar] [CrossRef]
- Gunst, J.D.; Gohil, J.; Li, J.Z.; Bosch, R.J.; White, C.S.A.; Chun, T.-W.; Mothe, B.; Gittens, K.; Praiss, L.; De Scheerder, M.-A.; et al. Time to HIV viral rebound and frequency of post-treatment control after analytical interruption of antiretroviral therapy: An individual data-based meta-analysis of 24 prospective studies. Nat. Commun. 2025, 16, 906. [Google Scholar] [CrossRef]
- Nordstrom, J.L.; Ferrari, G.; Margolis, D.M. Bispecific antibody-derived molecules to target persistent HIV infection. J. Virus Erad. 2022, 8, 100083. [Google Scholar] [CrossRef]
- Promsote, W.; Xu, L.; Hataye, J.; Fabozzi, G.; March, K.; Almasri, C.G.; DeMouth, M.E.; Lovelace, S.E.; Talana, C.A.; Doria-Rose, N.A.; et al. Trispecific antibody targeting HIV-1 and T cells activates and eliminates latently-infected cells in HIV/SHIV infections. Nat. Commun. 2023, 14, 3719. [Google Scholar] [CrossRef]
- Pegu, A.; Asokan, M.; Wu, L.; Wang, K.; Hataye, J.; Casazza, J.P.; Guo, X.; Shi, W.; Georgiev, I.; Zhou, T.; et al. Activation and lysis of human CD4 cells latently infected with HIV-1. Nat. Commun. 2015, 6, 8447. [Google Scholar] [CrossRef]
- Bosque, A.; Planelles, V. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 2009, 113, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Bertoletti, A.; Le Bert, N. Immunotherapy for Chronic Hepatitis B Virus Infection. Gut Liver 2018, 12, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Fergusson, J.R.; Wallace, Z.; Connolly, M.M.; Woon, A.P.; Suckling, R.J.; Hine, D.W.; Barber, C.; Bunjobpol, W.; Choi, B.S.; Crespillo, S.; et al. Immune-Mobilizing Monoclonal T Cell Receptors Mediate Specific and Rapid Elimination of Hepatitis B-Infected Cells. Hepatology 2020, 72, 1528–1540. [Google Scholar] [CrossRef]
- Quitt, O.; Luo, S.; Meyer, M.; Xie, Z.; Golsaz-Shirazi, F.; Loffredo-Verde, E.; Festag, J.; Bockmann, J.H.; Zhao, L.; Stadler, D.; et al. T-cell engager antibodies enable T cells to control HBV infection and to target HBsAg-positive hepatoma in mice. J. Hepatol. 2021, 75, 1058–1071. [Google Scholar] [CrossRef]
- Rovin, B.H.; Furie, R.; Latinis, K.; Looney, R.J.; Fervenza, F.C.; Sanchez-Guerrero, J.; Maciuca, R.; Zhang, D.; Garg, J.P.; Brunetta, P.; et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: The Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012, 64, 1215–1226. [Google Scholar] [CrossRef]
- Anolik, J.H.; Barnard, J.; Cappione, A.; Pugh-Bernard, A.E.; Felgar, R.E.; Looney, R.J.; Sanz, I. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum. 2004, 50, 3580–3590. [Google Scholar] [CrossRef]
- Han, S.; Zhuang, H.; Shumyak, S.; Yang, L.; Reeves, W.H. Mechanisms of Autoantibody Production in Systemic Lupus Erythematosus. Front. Immunol. 2015, 6, 00228. [Google Scholar] [CrossRef]
- Cambridge, G.; Leandro, M.J.; Teodorescu, M.; Manson, J.; Rahman, A.; Isenberg, D.A.; Edwards, J.C. B cell depletion therapy in systemic lupus erythematosus: Effect on autoantibody and antimicrobial antibody profiles. Arthritis Rheum. 2006, 54, 3612–3622. [Google Scholar] [CrossRef]
- Schett, G.; Nagy, G.; Krönke, G.; Mielenz, D. B-cell depletion in autoimmune diseases. Ann. Rheum. Dis. 2024, 83, 1409–1420. [Google Scholar] [CrossRef]
- Nunez, D.; Patel, D.; Volkov, J.; Wong, S.; Vorndran, Z.; Müller, F.; Aigner, M.; Völkl, S.; Mackensen, A.; Schett, G.; et al. Cytokine and reactivity profiles in SLE patients following anti-CD19 CART therapy. Mol. Ther. Methods Clin. Dev. 2023, 31, 101104. [Google Scholar] [CrossRef]
- Mackensen, A.; Müller, F.; Mougiakakos, D.; Böltz, S.; Wilhelm, A.; Aigner, M.; Völkl, S.; Simon, D.; Kleyer, A.; Munoz, L.; et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 2022, 28, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Leandro, M.; Cragg, M.; Kollert, F.; Schuler, F.; Klein, C.; Reddy, V. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clin. Exp. Immunol. 2024, 217, 15–30. [Google Scholar] [CrossRef] [PubMed]
- McHugh, J. BiTEing refractory RA. Nat. Rev. Rheumatol. 2024, 20, 395. [Google Scholar] [CrossRef] [PubMed]
- Subklewe, M.; Magno, G.; Gebhardt, C.; Bücklein, V.; Szelinski, F.; Arévalo, H.J.R.; Hänel, G.; Dörner, T.; Zugmaier, G.; von Bergwelt-Baildon, M.; et al. Application of blinatumomab, a bispecific anti-CD3/CD19 T-cell engager, in treating severe systemic sclerosis: A case study. Eur. J. Cancer 2024, 204, 114071. [Google Scholar] [CrossRef]
- Shouse, G.P.; Blum, K.A.; Haydu, J.E.; Abramson, J.S.; Narkhede, M.; Ip, A.; Michaelson, J.S.; Baeuerle, P.A.; Meetze, K.; Shapiro, I.; et al. A Phase 1, Open-Label, Dose Escalation and Dose Expansion Study of CLN-978 (CD19XCD3XHSA) in Patients with Relapsed/Refractory (R/R) B-Cell Non-Hodgkin Lymphoma (B-NHL). Blood 2023, 142, 3142. [Google Scholar] [CrossRef]
- Cullinan Therapeutics. Cullinan Therapeutics Announces Preclinical Data for CLN-978, a CD19-Directed T Cell Engager, to Be Presented at ACR Convergence 2024. Available online: https://www.globenewswire.com/news-release/2024/11/14/2981359/0/en/Cullinan-Therapeutics-Announces-Preclinical-Data-for-CLN-978-a-CD19-directed-T-Cell-Engager-to-be-Presented-at-ACR-Convergence-2024.html (accessed on 18 June 2025).
- Quigley, M.; Michaelson, J.; Jones, J.; Awan, F.; Shouse, G.; Zhang, Y.; Shearer, T.; Inumerable, J.; Shapiro, I.; Baeuerle, P.; et al. CLN-978, a CD19-Directed T Cell Engager (TCE), Leads to Rapid and Deep B Cell Depletion and Has Broad Potential for Development in Autoimmune Diseases. ACR Convergence 2024, Abstract. Available online: https://acrabstracts.org/abstract/cln-978-a-cd19-directed-t-cell-engager-tce-leads-to-rapid-and-deep-b-cell-depletion-and-has-broad-potential-for-development-in-autoimmune-diseases/ (accessed on 18 June 2025).
- Nikkhoi, S.K.; Li, G.; Hatefi, A. Natural killer cell engagers for cancer immunotherapy. Front. Oncol. 2024, 14, 1483884. [Google Scholar] [CrossRef]
- Fenis, A.; Demaria, O.; Gauthier, L.; Vivier, E.; Narni-Mancinelli, E. New immune cell engagers for cancer immunotherapy. Nat. Rev. Immunol. 2024, 24, 471–486. [Google Scholar] [CrossRef]
- Kucuksezer, U.C.; Aktas Cetin, E.; Esen, F.; Tahrali, I.; Akdeniz, N.; Gelmez, M.Y.; Deniz, G. The Role of Natural Killer Cells in Autoimmune Diseases. Front. Immunol. 2021, 12, 622306. [Google Scholar] [CrossRef]
- Rosenberg, J.; Huang, J. CD8(+) T Cells and NK Cells: Parallel and Complementary Soldiers of Immunotherapy. Curr. Opin. Chem. Eng. 2018, 19, 9–20. [Google Scholar] [CrossRef]
- Zhang, M.; Lam, K.P.; Xu, S. Natural Killer Cell Engagers (NKCEs): A new frontier in cancer immunotherapy. Front. Immunol. 2023, 14, 1207276. [Google Scholar] [CrossRef]
- Zambarda, C.; Guldevall, K.; Toullec, D.; Wingert, S.; Breunig, C.; Pinto, S.; Fontana, J.; Koch, J.; Önfelt, B. Abstract 2950: CD16A shedding facilitates repetitive targeting of tumor cells by AFM13-armed NK cells. Cancer Res. 2023, 83, 2950. [Google Scholar] [CrossRef]
- Khoshtinat Nikkhoi, S.; Yang, G.; Owji, H.; Grizotte-Lake, M.; Cohen, R.I.; Gil Gonzalez, L.; Massumi, M.; Hatefi, A. Bispecific immune cell engager enhances the anticancer activity of CD16+ NK cells and macrophages in vitro, and eliminates cancer metastasis in NK humanized NOG mice. J. Immunother. Cancer 2024, 12, e008295. [Google Scholar] [CrossRef] [PubMed]
- Nikkhoi, S.K.; Heydarzadeh, H.; Vandavasi, V.G.; Yang, G.; Louro, P.; Polunas, M.; Owji, H.; Hatefi, A. A high affinity and specificity anti-HER2 single-domain antibody (VHH) that targets trastuzumab’s epitope with versatile biochemical, biological, and medical applications. Immunol. Res. 2024, 72, 103–118. [Google Scholar] [CrossRef]
- Nikkhoi, S.K.; Li, G.; Eleya, S.; Yang, G.; Vandavasi, V.G.; Hatefi, A. Bispecific killer cell engager with high affinity and specificity toward CD16a on NK cells for cancer immunotherapy. Front. Immunol. 2022, 13, 1039969. [Google Scholar] [CrossRef]
- Ravandi, F.; Bashey, A.; Foran, J.; Stock, W.; Mawad, R.; Short, N.; Yilmaz, M.; Kantarjian, H.; Odenike, O.; Patel, A.; et al. Phase 1 study of vibecotamab identifies an optimized dose for treatment of relapsed/refractory acute myeloid leukemia. Blood Adv. 2023, 7, 6492–6505. [Google Scholar] [CrossRef]
- Xiao, X.; Cheng, Y.; Zheng, X.; Fang, Y.; Zhang, Y.; Sun, R.; Tian, Z.; Sun, H. Bispecific NK-cell engager targeting BCMA elicits stronger antitumor effects and produces less proinflammatory cytokines than T-cell engager. Front. Immunol. 2023, 14, 1113303. [Google Scholar] [CrossRef]
- Kim, H.R.; Saavedra, O.; Cervantes, A.; Lugowska, I.A.; Oberoi, A.; El-Khoueiry, A.B.; Thomas, J.S.; Rogowski, W.; Lopez, J.S.; Shim, B.Y.; et al. Preliminary results from the phase 2 study of AFM24 in combination with atezolizumab in patients with EGFR wild-type (EGFR-WT) non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2024, 42, 2522. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Rivas, D.; Lee, S.-H.; Thomas, J.S.; Kim, Y.J.; Cervantes, A.; Saavedra, O.; Shim, B.Y.; Kohlhas, L.; Hintzen, G.; et al. Leveraging innate immunity with AFM24, a novel CD16A and epidermal growth factor receptor (EGFR) bispecific innate cell engager: Interim results for the non-small cell lung cancer (NSCLC) cohort. J. Clin. Oncol. 2023, 41, 2533. [Google Scholar] [CrossRef]
- Kontić, M.; Marković, F.; Nikolić, N.; Samardžić, N.; Stojanović, G.; Simurdić, P.; Petkov, S.; Bursać, D.; Zarić, B.; Stjepanović, M. Efficacy of Atezolizumab in Subsequent Lines of Therapy for NSCLC Patients: Insights from Real-World Data. Cancers 2024, 16, 3696. [Google Scholar] [CrossRef]
- Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J. Clin. Oncol. 2017, 35, 2125–2132. [Google Scholar] [CrossRef]
- Kim, W.S.; Shortt, J.; Zinzani, P.L.; Mikhaylova, N.; Marin-Niebla, A.; Radeski, D.; Ribrag, V.; Domenech, E.D.; Sawas, A.; Alexis, K.; et al. Abstract CT024: REDIRECT: A Phase 2 study of AFM13 in patients with CD30-positive relapsed or refractory (R/R) peripheral T cell lymphoma (PTCL). Cancer Res. 2023, 83, CT024. [Google Scholar] [CrossRef]
- Sasse, S.; Bröckelmann, P.J.; Momotow, J.; Plütschow, A.; Hüttmann, A.; Basara, N.; Koenecke, C.; Martin, S.; Bentz, M.; Grosse-Thie, C.; et al. AFM13 in patients with relapsed or refractory classical Hodgkin lymphoma: Final results of an open-label, randomized, multicenter phase II trial. Leuk. Lymphoma 2022, 63, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, A.; Harstrick, A.; Emig, M.; Overesch, A.; Pinto, S.; Ravenstijn, P.; Schlüter, T.; Rubel, J.; Rebscher, H.; Graefe, T.; et al. AFM13 in Combination with Allogeneic Natural Killer Cells (AB-101) in Relapsed or Refractory Hodgkin Lymphoma and CD30 + Peripheral T-Cell Lymphoma: A Phase 2 Study (LuminICE). Blood 2023, 142, 4855. [Google Scholar] [CrossRef]
- Affimed. Affimed and NKMax America to Study the Combination of AFM24, an EGFR-Targeted Innate Cell Engager, with SNK01 Natural Killer Cell Therapy. Available online: https://www.affimed.com/affimed-and-nkmax-america-to-study-the-combination-of-afm24-an-egfr-targeted-innate-cell-engager-with-snk01-natural-killer-cell-therapy/ (accessed on 18 June 2025).
- GT Biopharma, Inc. Product Pipeline Overview. Available online: https://www.gtbiopharma.com/product-pipeline/overview (accessed on 18 June 2025).
- Yang, G.; Nikkhoi, S.K.; Owji, H.; Li, G.; Massumi, M.; Cervelli, J.; Vandavasi, V.G.; Hatefi, A. A Novel Tetravalent Bispecific Immune Cell Engager Activates Natural Killer Cells to Kill Cancer Cells without Mediating Fratricide. Antibodies 2024, 13, 75. [Google Scholar] [CrossRef]
- Bernard, N.F.; Alsulami, K.; Pavey, E.; Dupuy, F.P. NK Cells in Protection from HIV Infection. Viruses 2022, 14, 1143. [Google Scholar] [CrossRef]
- Li, W.; Wu, Y.; Kong, D.; Yang, H.; Wang, Y.; Shao, J.; Feng, Y.; Chen, W.; Ma, L.; Ying, T.; et al. One-domain CD4 Fused to Human Anti-CD16 Antibody Domain Mediates Effective Killing of HIV-1-Infected Cells. Sci. Rep. 2017, 7, 9130. [Google Scholar] [CrossRef]
- Harris, A.; Borgnia, M.J.; Shi, D.; Bartesaghi, A.; He, H.; Pejchal, R.; Kang, Y.K.; Depetris, R.; Marozsan, A.J.; Sanders, R.W.; et al. Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. Proc. Natl. Acad. Sci. USA 2011, 108, 11440–11445. [Google Scholar] [CrossRef]
- Tohmé, M.; Davis, T.; Zhang, M.; Lemar, H.; Duong, B.; Tan, J.; Trager, J. 902 NKX019, an off-the-shelf CD19 CAR-NK cell, mediates improved anti-tumor activity and persistence in combination with CD20-directed therapeutic mAbs. J. Immunother. Cancer 2022, 10, A940. [Google Scholar] [CrossRef]
- Askanase, A.; Khalili, L.; Chang, C.; Blaus, A.; Gip, P.; Karis, E.; Shook, D. A Phase 1 Study of NKX019, an Allogeneic Chimeric Antigen Receptor Natural Killer (CAR-NK) Cell Therapy in Patients with Systemic Lupus Erythematosus. Blood 2024, 144, 4846.1. [Google Scholar] [CrossRef]
- Cichocki, F.; Goodridge, J.P.; Bjordahl, R.; Mahmood, S.; Davis, Z.B.; Gaidarova, S.; Abujarour, R.; Groff, B.; Witty, A.; Wang, H.; et al. Dual antigen-targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia. Blood 2022, 140, 2451–2462. [Google Scholar] [CrossRef]
- Koh, S.K.; Kim, H.; Han, B.; Jo, H.; Doh, J.; Park, J.; Nguyen, M.H.; Kim, H.-Y.; Kim, H.; Lee, S.-H.; et al. Anti-CD19 antibody cotreatment enhances serial killing activity of anti-CD19 CAR-T/-NK cells and reduces trogocytosis. Blood 2025, 145, 956–969. [Google Scholar] [CrossRef] [PubMed]
- Bachanova, V.; Deol, A.; Al-Juhaishi, T.M.S.; Lulla, P.D.; Byrne, M.T.; Wong, C.; Bickers, C.; Greene, T.; Wong, L.; Villa, B.; et al. Safety and Efficacy of FT522, a First-in-Class, Multi-Antigen Targeted, Off-the-Shelf, iPSC-Derived CD19 CAR NK Cell Therapy with Alloimmune Defense Receptor (ADR) in Relapsed/Refractory B-Cell Lymphoma. Blood 2024, 144, 6543. [Google Scholar] [CrossRef]
- Le, R.Q.; Li, L.; Yuan, W.; Shord, S.S.; Nie, L.; Habtemariam, B.A.; Przepiorka, D.; Farrell, A.T.; Pazdur, R. FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist 2018, 23, 943–947. [Google Scholar] [CrossRef] [PubMed]
- James, N.D.; Atherton, P.J.; Jones, J.; Howie, A.J.; Tchekmedyian, S.; Curnow, R.T. A phase II study of the bispecific antibody MDX-H210 (anti-HER2xCD64) with GM-CSF in HER2+ advanced prostate cancer. Br. J. Cancer 2001, 85, 152–156. [Google Scholar] [CrossRef]
- Fury, M.G.; Lipton, A.; Smith, K.M.; Winston, C.B.; Pfister, D.G. A phase-I trial of the epidermal growth factor receptor directed bispecific antibody MDX-447 without and with recombinant human granulocyte-colony stimulating factor in patients with advanced solid tumors. Cancer Immunol. Immunother. 2008, 57, 155–163. [Google Scholar] [CrossRef]
- Repp, R.; van Ojik, H.H.; Valerius, T.; Groenewegen, G.; Wieland, G.; Oetzel, C.; Stockmeyer, B.; Becker, W.; Eisenhut, M.; Steininger, H.; et al. Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcγRI × anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br. J. Cancer 2003, 89, 2234–2243. [Google Scholar] [CrossRef]
- Valone, F.H.; Kaufman, P.A.; Guyre, P.M.; Lewis, L.D.; Memoli, V.; Deo, Y.; Graziano, R.; Fisher, J.L.; Meyer, L.; Mrozek-Orlowski, M. Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-2/neu. J. Clin. Oncol. 1995, 13, 2281–2292. [Google Scholar] [CrossRef]
- Borchmann, P.; Schnell, R.; Fuss, I.; Manzke, O.; Davis, T.; Lewis, L.D.; Behnke, D.; Wickenhauser, C.; Schiller, P.; Diehl, V.; et al. Phase 1 trial of the novel bispecific molecule H22xKi-4 in patients with refractory Hodgkin lymphoma. Blood 2002, 100, 3101–3107. [Google Scholar] [CrossRef]
- Li, B.T.; Pegram, M.D.; Lee, K.-W.; Sharma, M.; Lee, J.; Spira, A.I.; Hanna, G.J.; Kang, Y.-K.; Rasco, D.W.; Moore, K.N.; et al. A phase 1/2 study of a first-in-human immune-stimulating antibody conjugate (ISAC) BDC-1001 in patients with advanced HER2-expressing solid tumors. J. Clin. Oncol. 2023, 41, 2538. [Google Scholar] [CrossRef]
- Pegram, M.D.; Calfa, C.; Chen, C.; Salgado, A.C.; Heeke, A.L.; Kang, I.; Pistilli, B.; Pohlmann, P.R.; Rugo, H.S.; Saura, C.; et al. Phase 2 study of novel HER2-targeting, TLR7/8 immune-stimulating antibody conjugate (ISAC) BDC-1001 (trastuzumab imbotolimod) +/- pertuzumab (P) in patients (pts) with HER2-positive metastatic breast cancer (MBC) previously treated with trastuzumab deruxtecan (T-DXd). J. Clin. Oncol. 2024, 42, TPS1121. [Google Scholar] [CrossRef]
- Janku, F.; Han, S.W.; Doi, T.; Amatu, A.; Ajani, J.A.; Kuboki, Y.; Cortez, A.; Cellitti, S.E.; Mahling, P.C.; Subramanian, K.; et al. Preclinical Characterization and Phase I Study of an Anti-HER2-TLR7 Immune-Stimulator Antibody Conjugate in Patients with HER2+ Malignancies. Cancer Immunol. Res. 2022, 10, 1441–1461. [Google Scholar] [CrossRef]
- Janku, F.; Han, S.-W.; Doi, T.; Ajani, J.; Kuboki, Y.; Mahling, P.; Subramanian, K.; Pelletier, M.; Askoxylakis, V.; Siena, S. 378 A first in-human, multicenter, open-label, dose-finding phase 1 study of the immune stimulator antibody conjugate NJH395 in patients with nonbreast HER2+ advanced malignancies. J. Immunother. Cancer 2020, 8, A230. [Google Scholar] [CrossRef]
- Perez, C.; Henry, J.; Kim, S.; El-Khoueiry, A.; Gutierrez, M.; Pavlick, A.; Lee, J.; Bollini, S.; Jin, F.; Harrabi, O.; et al. 743 INCLINE-101: Preliminary safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of TAC-001 (TLR9 agonist conjugated to a CD22 mAb) in patients with advanced or metastatic solid tumors. J. Immunother. Cancer 2023, 11, A838. [Google Scholar] [CrossRef]
- Kuo, T.C.; Harrabi, O.; Chen, A.; Sangalang, E.R.; Doyle, L.; Fontaine, D.; Li, M.; Han, B.; Pons, J.; Sim, J.; et al. Abstract 1721: TAC-001, a toll-like receptor 9 (TLR9) agonist antibody conjugate targeting B cells, promotes anti-tumor immunity and favorable safety profile following systemic administration in preclinical models. Cancer Res. 2021, 81, 1721. [Google Scholar] [CrossRef]
- Lin, N.; Du, T.; Zhou, H.; Li, Y.; Wang, L.; Dong, X.; Zheng, H.; Lu, J.; Tang, M.; Wu, J.; et al. BR105 Is a Novel Anti-Sirpα Monoclonal Antibody That Demonstrates a Favorable Safety Profile and Potent Anti-Tumor Efficacy in Patients with Relapsed/Refractory Lymphoid Malignancies: Preliminary Results from a Phase I Study. Blood 2024, 144, 4175. [Google Scholar] [CrossRef]
- Xue, J.; Ge, X.; Li, Q.; Xue, L.; Zhao, W.; Lin, F.; Tang, W.; Zhou, J.; Guo, Y. A phase Ia, dose-escalation study of IMB071703 injection in patients (pts) with recurrent or metastatic, advanced solid tumors. J. Clin. Oncol. 2024, 42, e14502. [Google Scholar] [CrossRef]
- Pandya, N.; Chen, W.; Lohr, J.; Yao, X.-T.; Burns, R.; Li, H.; Li, H.; Muth, J.; Goldwater, R.; Bonvini, E.; et al. OP0201 Safety, Tolerability, and Functional Activity of MGD010, A Dart® Molecule Targeting CD32B and CD79B, Following A Single Dose Administration in Healthy Volunteers. Ann. Rheum. Dis. 2016, 75, 132–133. [Google Scholar] [CrossRef]
- Gomez-Roca, C.A.; Steeghs, N.; Gort, E.H.; Winter, H.A.M.D.; Fernandez, E.; Stavropoulou, V.; Stojcheva, N.; Baverel, P.; Krieg, J.; Ioannou, K.; et al. Phase I study of MP0317, a FAP-dependent DARPin, for tumor-localized CD40 activation in patients with advanced solid tumors. J. Clin. Oncol. 2023, 41, 2584. [Google Scholar] [CrossRef]
- Steeghs, N.; Gomez-Roca, C.A.; Korakis, I.; Gort, E.H.; Winter, H.A.M.D.; Stojcheva, N.; Stavropoulou, V.; Krieg, J.; Baverel, P.; Fernandez, E.; et al. Effect of MP0317, a FAP x CD40 DARPin, on safety profile and tumor-localized CD40 activation in a phase 1 study in patients with advanced solid tumors. J. Clin. Oncol. 2024, 42, 2573. [Google Scholar] [CrossRef]
- Holtrop, T.; Budding, K.; Brandsma, A.M.; Leusen, J.H.W. Targeting the high affinity receptor, FcγRI, in autoimmune disease, neuropathy, and cancer. Immunother. Adv. 2022, 2, ltac011. [Google Scholar] [CrossRef]
- Heemskerk, N.; Gruijs, M.; Temming, A.R.; Heineke, M.H.; Gout, D.Y.; Hellingman, T.; Tuk, C.W.; Winter, P.J.; Lissenberg-Thunnissen, S.; Bentlage, A.E.; et al. Augmented antibody-based anticancer therapeutics boost neutrophil cytotoxicity. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.T.; Tzvetkov, E.; Pereira, A.; Wu, Y.; Kasar, S.; Przetak, M.M.; Vlach, J.; Niewold, T.B.; Jensen, M.A.; Okitsu, S.L. TLR7 and TLR8 Differentially Activate the IRF and NF-κB Pathways in Specific Cell Types to Promote Inflammation. ImmunoHorizons 2020, 4, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Desnues, B.; Macedo, A.B.; Roussel-Queval, A.; Bonnardel, J.; Henri, S.; Demaria, O.; Alexopoulou, L. TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc. Natl. Acad. Sci. USA 2014, 111, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Salmon, S.L.; Lotz, S.A.; Metzger, D.W. Interleukin-12 promotes gamma interferon-dependent neutrophil recruitment in the lung and improves protection against respiratory Streptococcus pneumoniae infection. Infect. Immun. 2007, 75, 1196–1202. [Google Scholar] [CrossRef]
- Nickerson, K.M.; Christensen, S.R.; Shupe, J.; Kashgarian, M.; Kim, D.; Elkon, K.; Shlomchik, M.J. TLR9 Regulates TLR7- and MyD88-Dependent Autoantibody Production and Disease in a Murine Model of Lupus. J. Immunol. 2010, 184, 1840–1848. [Google Scholar] [CrossRef]
- Le Naour, J.; Kroemer, G. Trial watch: Toll-like receptor ligands in cancer therapy. Oncoimmunology 2023, 12, 2180237. [Google Scholar] [CrossRef]
- Bolt Biotherapeutics. Bolt Biotherapeutics Reports First Quarter 2024 Results, Announces Strategic Pipeline Prioritization and Changes to Leadership Team. Available online: https://investors.boltbio.com/news-releases/news-release-details/bolt-biotherapeutics-reports-first-quarter-2024-results (accessed on 18 June 2025).
- AxisPharm. ADC: All You Need to Know About Targeting, Termination, Optimization, and Phase II/III Clinical Trials. Available online: https://axispharm.com/adc-targeting-termination-optimization-phase-ii-iii-clinical-trials/ (accessed on 10 May 2025).
- Bonacorsi, M.Z.; Chen, A.; Harrabi, O.; Li, M.; Sangalang, E.R.; Fontaine, D.; Sim, J.; Strop, P.; Wan, H.I.; Costa, M.J. Abstract 6746: A B-cell targeted TLR9 agonist antibody conjugate potentiates cancer vaccine efficacy and rejuvenates vaccine responses in the elderly. Cancer Res. 2024, 84 (Suppl. S6), 6746. [Google Scholar] [CrossRef]
- Wu, Z.H.; Li, N.; Mei, X.F.; Chen, J.; Wang, X.Z.; Guo, T.T.; Chen, G.; Nie, L.; Chen, Y.; Jiang, M.Z.; et al. Preclinical characterization of the novel anti-SIRPα antibody BR105 that targets the myeloid immune checkpoint. J. Immunother. Cancer 2022, 10, e004054. [Google Scholar] [CrossRef]
- Appleman, V.; Matsuda, A.; Ganno, M.; Lopez, A.M.; Rosentrater, E.; Christensen, C.; Merrigan, S.; Lee, H.M.; Lee, M.Y.; Dong, L.; et al. 1153 Preclinical activity of C-C chemokine receptor 2 (CCR2)-targeted immune stimulating antibody conjugate (ISAC), motivating clinical testing of TAK-500. J. Immunother. Cancer 2022, 10, A1196. [Google Scholar] [CrossRef]
- Schalper, K.A.; Matsuda, A.; Ganno-Sherwood, M.; Maldonado-Lopez, A.E.; Rosentrater, E.; Porciuncula, A.; Zhang, D.M.; Christensen, C.L.; Merrigan, S.A.; Hatten, T.; et al. Abstract 1841: TAK-500 is a clinical stage immune-cell directed antibody drug conjugate (iADC) inducing STING activation in CCR2-expressing intratumor myeloid cells and favorable immunomodulation. Cancer Res. 2023, 83, 1841. [Google Scholar] [CrossRef]
- Ackerman, M.E.; Dugast, A.S.; McAndrew, E.G.; Tsoukas, S.; Licht, A.F.; Irvine, D.J.; Alter, G. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b. J. Virol. 2013, 87, 5468–5476. [Google Scholar] [CrossRef] [PubMed]
- Pantaleo, G.; Correia, B.; Fenwick, C.; Joo, V.S.; Perez, L. Antibodies to combat viral infections: Development strategies and progress. Nat. Rev. Drug Discov. 2022, 21, 676–696. [Google Scholar] [CrossRef] [PubMed]
- Flipse, J.; Diosa-Toro, M.A.; Hoornweg, T.E.; van de Pol, D.P.I.; Urcuqui-Inchima, S.; Smit, J.M. Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses. Sci. Rep. 2016, 6, 29201. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, X.; Zhao, X.; Yuan, M.; Zhang, K.; Dai, J.; Guan, X.; Qiu, H.J.; Li, Y. Antibody-Dependent Enhancement: “Evil” Antibodies Favorable for Viral Infections. Viruses 2022, 14, 1739. [Google Scholar] [CrossRef]
- Janoff, E.N.; Wahl, S.M.; Thomas, K.; Smith, P.D. Modulation of human immunodeficiency virus type 1 infection of human monocytes by IgA. J. Infect. Dis. 1995, 172, 855–858. [Google Scholar] [CrossRef]
- Wan, Y.; Shang, J.; Sun, S.; Tai, W.; Chen, J.; Geng, Q.; He, L.; Chen, Y.; Wu, J.; Shi, Z.; et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J. Virol. 2020, 94, e02015–e02019. [Google Scholar] [CrossRef]
- Genovese, M.C.; Becker, J.-C.; Schiff, M.; Luggen, M.; Sherrer, Y.; Kremer, J.; Birbara, C.; Box, J.; Natarajan, K.; Nuamah, I.; et al. Abatacept for Rheumatoid Arthritis Refractory to Tumor Necrosis Factor α Inhibition. N. Engl. J. Med. 2005, 353, 1114–1123. [Google Scholar] [CrossRef]
- Cope, A.P.; Jasenecova, M.; Vasconcelos, J.C.; Filer, A.; Raza, K.; Qureshi, S.; D’Agostino, M.A.; McInnes, I.B.; Isaacs, J.D.; Pratt, A.G.; et al. Abatacept in individuals at high risk of rheumatoid arthritis (APIPPRA): A randomised, double-blind, multicentre, parallel, placebo-controlled, phase 2b clinical trial. Lancet 2024, 403, 838–849. [Google Scholar] [CrossRef]
- Baer, A.N.; Gottenberg, J.-E.; St Clair, E.W.; Sumida, T.; Takeuchi, T.; Seror, R.; Foulks, G.; Nys, M.; Mukherjee, S.; Wong, R.; et al. Efficacy and safety of abatacept in active primary Sjögren’s syndrome: Results of a phase III, randomised, placebo-controlled trial. Ann. Rheum. Dis. 2021, 80, 339–348. [Google Scholar] [CrossRef]
- de Wolff, L.; van Nimwegen, J.F.; Mossel, E.; van Zuiden, G.S.; Stel, A.J.; Majoor, K.I.; Olie, L.; Los, L.I.; Vissink, A.; Spijkervet, F.K.L.; et al. Long-term abatacept treatment for 48 weeks in patients with primary Sjögren’s syndrome: The open-label extension phase of the ASAP-III trial. Semin. Arthritis Rheum. 2022, 53, 151955. [Google Scholar] [CrossRef]
- Shock, A.; Burkly, L.; Wakefield, I.; Peters, C.; Garber, E.; Ferrant, J.; Taylor, F.R.; Su, L.; Hsu, Y.M.; Hutto, D.; et al. CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: An in vivo study. Arthritis Res. Ther. 2015, 17, 234. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.A.; Bruce, I.N.; Dörner, T.; Leon, M.G.; Leszczyński, P.; Urowitz, M.; Haier, B.; Jimenez, T.; Brittain, C.; Liu, J.; et al. Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus. Rheumatology 2021, 60, 5397–5407. [Google Scholar] [CrossRef] [PubMed]
- Clowse, M.I.D.; Merrill, J.; Dörner, T.; Petri, M.; Vital, E.; Morand, E.; Jimenez, T.; Brookes, S.; Gaiha-Rohrbach, J.; Martin, C.; et al. Dapirolizumab Pegol Demonstrated Significant Improvement in Systemic Lupus Erythematosus Disease Activity: Efficacy and Safety Results of a Phase 3 Trial [abstract]. Arthritis Rheumatol. 2024, 76, 900–902. [Google Scholar]
- Cheng, S.; Wang, H.; Zhou, H. The Role of TLR4 on B Cell Activation and Anti-β(2)GPI Antibody Production in the Antiphospholipid Syndrome. J. Immunol. Res. 2016, 2016, 1719720. [Google Scholar] [CrossRef]
- Monnet, E.; Choy, E.H.; McInnes, I.; Kobakhidze, T.; de Graaf, K.; Jacqmin, P.; Lapeyre, G.; de Min, C. Efficacy and safety of NI-0101, an anti-toll-like receptor 4 monoclonal antibody, in patients with rheumatoid arthritis after inadequate response to methotrexate: A phase II study. Ann. Rheum. Dis. 2020, 79, 316–323. [Google Scholar] [CrossRef]
- Romano, E.; Kusio-Kobialka, M.; Foukas, P.G.; Baumgaertner, P.; Meyer, C.; Ballabeni, P.; Michielin, O.; Weide, B.; Romero, P.; Speiser, D.E. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl. Acad. Sci. USA 2015, 112, 6140–6145. [Google Scholar] [CrossRef]
- Gubser, C.; Chiu, C.; Lewin, S.R.; Rasmussen, T.A. Immune checkpoint blockade in HIV. eBioMedicine 2022, 76, 103840. [Google Scholar] [CrossRef]
- Moreno-Vicente, J.; Willoughby, J.E.; Taylor, M.C.; Booth, S.G.; English, V.L.; Williams, E.L.; Penfold, C.A.; Mockridge, C.I.; Inzhelevskaya, T.; Kim, J.; et al. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments. J. Immunother. Cancer 2022, 10, e003735. [Google Scholar] [CrossRef]
- Papadakis, M.; Karniadakis, I.; Mazonakis, N.; Akinosoglou, K.; Tsioutis, C.; Spernovasilis, N. Immune Checkpoint Inhibitors and Infection: What Is the Interplay? Vivo 2023, 37, 2409–2420. [Google Scholar] [CrossRef]
- King, H.A.D.; Lewin, S.R. Immune checkpoint inhibitors in infectious disease. Immunol. Rev. 2024, 328, 350–371. [Google Scholar] [CrossRef]
- Wykes, M.N.; Lewin, S.R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 2018, 18, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Uldrick, T.S.; Adams, S.V.; Fromentin, R.; Roche, M.; Fling, S.P.; Gonçalves, P.H.; Lurain, K.; Ramaswami, R.; Wang, C.J.; Gorelick, R.J.; et al. Pembrolizumab induces HIV latency reversal in people living with HIV and cancer on antiretroviral therapy. Sci. Transl. Med. 2022, 14, eabl3836. [Google Scholar] [CrossRef] [PubMed]
- Ramgopal, M.; Lalezari, J.; Pires dos Santos, A.G.; Krishnan, P.; Vaidya, T.; Zhou, F.; Mostafa, N.M.; Geib, T.; Betman, H.; Dorr, P.; et al. Safety, pharmacokinetics, and exploratory efficacy of the PD-1 inhibitor budigalimab in antiretroviral treatment-suppressed people living with HIV-1: Preliminary analysis of 2 Phase 1b studies including an analytical treatment interruption. In Proceedings of the 19th European AIDS Conference (EACS 2023), Warsaw, Poland, 18–21 October 2023. [Google Scholar]
- Italiano, A.; Cassier, P.A.; Lin, C.C.; Alanko, T.; Peltola, K.J.; Gazzah, A.; Shiah, H.S.; Calvo, E.; Cervantes, A.; Roda, D.; et al. First-in-human phase 1 study of budigalimab, an anti-PD-1 inhibitor, in patients with non-small cell lung cancer and head and neck squamous cell carcinoma. Cancer Immunol. Immunother. 2022, 71, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Scapin, G.; Yang, X.; Prosise, W.W.; McCoy, M.; Reichert, P.; Johnston, J.M.; Kashi, R.S.; Strickland, C. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat. Struct. Mol. Biol. 2015, 22, 953–958. [Google Scholar] [CrossRef]
- Hale, G.; De Vos, J.; Davy, A.D.; Sandra, K.; Wilkinson, I. Systematic analysis of Fc mutations designed to reduce binding to Fc-gamma receptors. MAbs 2024, 16, 2402701. [Google Scholar] [CrossRef]
- Fromentin, R.; DaFonseca, S.; Costiniuk, C.T.; El-Far, M.; Procopio, F.A.; Hecht, F.M.; Hoh, R.; Deeks, S.G.; Hazuda, D.J.; Lewin, S.R.; et al. PD-1 blockade potentiates HIV latency reversal ex vivo in CD4(+) T cells from ART-suppressed individuals. Nat. Commun. 2019, 10, 814. [Google Scholar] [CrossRef]
- Karunarathne, D.S.; Horne-Debets, J.M.; Huang, J.X.; Faleiro, R.; Leow, C.Y.; Amante, F.; Watkins, T.S.; Miles, J.J.; Dwyer, P.J.; Stacey, K.J.; et al. Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing CD4(+) T Cell Immunity. Immunity 2016, 45, 333–345. [Google Scholar] [CrossRef]
- Esfahani, K.; Meti, N.; Miller, W.H., Jr.; Hudson, M. Adverse events associated with immune checkpoint inhibitor treatment for cancer. Cmaj 2019, 191, E40–E46. [Google Scholar] [CrossRef]
- Paluch, C.; Santos, A.M.; Anzilotti, C.; Cornall, R.J.; Davis, S.J. Immune Checkpoints as Therapeutic Targets in Autoimmunity. Front. Immunol. 2018, 9, 2306. [Google Scholar] [CrossRef]
- Luu, K.; Dahl, M.; Hare, E.; Sibley, C.; Lizzul, P.; Randazzo, B. DOP81 Rosnilimab, a novel PD-1 agonist monoclonal antibody, reduces T cell proliferation, inflammatory cytokine secretion, and PD-1high expressing CD4 and CD8 T cells: Results from a Phase 1 healthy volunteer clinical trial. J. Crohn’s Colitis 2024, 18, i226. [Google Scholar] [CrossRef]
- AnaptysBio, Inc. Anaptys Announces Rosnilimab Achieved Positive Results in RA Phase 2b Trial and Highest Ever Reported CDAI LDA Response Over 6 Months. Available online: https://ir.anaptysbio.com/news-releases/news-release-details/anaptys-announces-rosnilimab-achieved-positive-results-ra-phase (accessed on 18 June 2025).
- Tuttle, J.; Drescher, E.; Simón-Campos, J.A.; Emery, P.; Greenwald, M.; Kivitz, A.; Rha, H.; Yachi, P.; Kiley, C.; Nirula, A. A Phase 2 Trial of Peresolimab for Adults with Rheumatoid Arthritis. N. Engl. J. Med. 2023, 388, 1853–1862. [Google Scholar] [CrossRef] [PubMed]
- Farhangnia, P.; Ghomi, S.M.; Akbarpour, M.; Delbandi, A.A. Bispecific antibodies targeting CTLA-4: Game-changer troopers in cancer immunotherapy. Front. Immunol. 2023, 14, 1155778. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, A.R.; McBride, A.; Slack, M.; Erstad, B.L.; Abraham, I. Potential Immune-Related Adverse Events Associated with Monotherapy and Combination Therapy of Ipilimumab, Nivolumab, and Pembrolizumab for Advanced Melanoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lou, H.; Cai, H.-B.; Huang, X.; Li, G.; Wang, L.; Liu, T.; Liu, W.; Li, B.; Xia, Y. A study of AK104 (an anti-PD1 and anti-CTLA4 bispecific antibody) combined with standard therapy for the first-line treatment of persistent, recurrent, or metastatic cervical cancer (R/M CC). J. Clin. Oncol. 2022, 40, 106. [Google Scholar] [CrossRef]
- Ma, Y.; Xue, J.; Zhao, Y.; Zhang, Y.; Huang, Y.; Yang, Y.; Fang, W.; Guo, Y.; Li, Q.; Ge, X.; et al. Phase I trial of KN046, a novel bispecific antibody targeting PD-L1 and CTLA-4 in patients with advanced solid tumors. J. Immunother. Cancer 2023, 11, e006654. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Zhang, Q.; Ouyang, Q.; Zhang, Y.; Liu, Q.; Sun, T.; Ye, F.; Zhang, B.; Xia, S.; et al. The anti-PD-L1/CTLA-4 bispecific antibody KN046 in combination with nab-paclitaxel in first-line treatment of metastatic triple-negative breast cancer: A multicenter phase II trial. Nat. Commun. 2024, 15, 1015. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, G.; Li, X.; Wu, J.; Chang, B.; Hu, S.; Yang, S.; Xu, T.; Liu, Y.; Wang, N.; et al. KN046, a bispecific antibody against PD-L1 and CTLA-4, plus chemotherapy as first-line treatment for metastatic NSCLC: A multicenter phase 2 trial. Cell Rep. Med. 2024, 5, 101470. [Google Scholar] [CrossRef]
- Xing, B.; Da, X.; Zhang, Y.; Ma, Y. A phase II study combining KN046 (an anti-PD-L1/CTLA-4 bispecific antibody) and lenvatinib in the treatment for advanced unresectable or metastatic hepatocellular carcinoma (HCC): Updated efficacy and safety results. J. Clin. Oncol. 2022, 40, 4115. [Google Scholar] [CrossRef]
- Jin, G.; Guo, S.; Xu, J.; Liu, R.; Liang, Q.; Yang, Y.; Guo, B.; Xu, Y.; Xia, B.; Zhang, C.; et al. A multicenter, randomized, double-blind phase III clinical study to evaluate the efficacy and safety of KN046 combined with nab-paclitaxel and gemcitabine versus placebo combined with nab-paclitaxel and gemcitabine in patients with advanced pancreatic cancer (ENREACH-PDAC-01). J. Clin. Oncol. 2022, 40, TPS4189. [Google Scholar] [CrossRef]
- Gang, J.; Guo, S.; Zhang, Y.; Ma, Y.; Guo, X.; Zhou, X.; Yu, Q. A phase II study of KN046 monotherapy as 2nd line and above treatment for unresectable locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). J. Clin. Oncol. 2022, 40, e16305. [Google Scholar] [CrossRef]
- Immunocore Holdings plc. Immunocore Presents Initial Multiple Ascending Dose Data for HIV Functional Cure Candidate in an Oral Presentation at CROI 2025. Available online: https://www.immunocore.com/investors/news/press-releases/detail/112/immunocore-presents-initial-multiple-ascending-dose-data-for-hiv-functional-cure-candidate-in-an-oral-presentation-at-croi-2025 (accessed on 18 June 2025).
- Chamberlain, C.; Colman, P.J.; Ranger, A.M.; Burkly, L.C.; Johnston, G.I.; Otoul, C.; Stach, C.; Zamacona, M.; Dörner, T.; Urowitz, M.; et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann. Rheum. Dis. 2017, 76, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.A.; Luskin, M.R.; Rimando, J.; Blackford, A.; Zeidan, A.M.; Sharon, E.; Streicher, H.; DeAngelo, D.J.; Luznik, L.; Gojo, I. Blinatumomab in Combination with Immune Checkpoint Inhibitors (ICIs) of PD-1 and CTLA-4 in Adult Patients with Relapsed/Refractory (R/R) CD19 Positive B-Cell Acute Lymphoblastic Leukemia (ALL): Results of a Phase I Study. Blood 2023, 142, 966. [Google Scholar] [CrossRef]
- National Cancer Institute. NCI-2015-01167: Clinical Trial Information. Available online: https://www.cancer.gov/research/participate/clinical-trials-search/v?id=NCI-2015-01167 (accessed on 18 June 2025).
- Liu, L.; Lam, C.-Y.K.; Long, V.; Widjaja, L.; Yang, Y.; Li, H.; Jin, L.; Burke, S.; Gorlatov, S.; Brown, J.; et al. MGD011, A CD19 x CD3 Dual-Affinity Retargeting Bi-specific Molecule Incorporating Extended Circulating Half-life for the Treatment of B-Cell Malignancies. Clin. Cancer Res. 2017, 23, 1506–1518. [Google Scholar] [CrossRef]
- MacroGenics, Inc. MacroGenics Announces Termination of Duvortuxizumab Collaboration. Available online: https://ir.macrogenics.com/news-releases/news-release-details/macrogenics-announces-termination-duvortuxizumab-collaboration (accessed on 18 June 2025).
- Tang, D.; Kang, R. Tarlatamab: The promising immunotherapy on its way from the lab to the clinic. Transl. Lung Cancer Res. 2023, 12, 1355–1357. [Google Scholar] [CrossRef]
- Howlett, S.; Carter, T.J.; Shaw, H.M.; Nathan, P.D. Tebentafusp: A first-in-class treatment for metastatic uveal melanoma. Ther. Adv. Med. Oncol. 2023, 15, 17588359231160140. [Google Scholar] [CrossRef]
- Hamid, O.; Hassel, J.C.; Shoushtari, A.N.; Meier, F.; Bauer, T.M.; Salama, A.K.S.; Kirkwood, J.M.; Ascierto, P.A.; Lorigan, P.C.; Mauch, C.; et al. Tebentafusp in combination with durvalumab and/or tremelimumab in patients with metastatic cutaneous melanoma: A phase 1 study. J. Immunother. Cancer 2023, 11, e006747. [Google Scholar] [CrossRef]
- US Food and Drug Administration. NDA/BLA Multi-Disciplinary Review and Evaluation: IMDELLTRA-Tarlatamab (BLA 761344); US Food and Drug Administration: Silver Spring, MD, USA, 2024. [Google Scholar]
- Ravandi, F.; Subklewe, M.; Walter, R.B.; Vachhani, P.; Ossenkoppele, G.; Buecklein, V.; Döhner, H.; Jongen-Lavrencic, M.; Baldus, C.D.; Fransecky, L.; et al. Safety and tolerability of AMG 330 in adults with relapsed/refractory AML: A phase 1a dose-escalation study. Leuk. Lymphoma 2024, 65, 1281–1291. [Google Scholar] [CrossRef]
- Amgen Inc. A Phase 1b Study Assessing Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Efficacy of AMG 330 cIV in Combination with Pembrolizumab in Adult Subjects with Relapsed or Refractory Acute Myeloid Leukemia; Protocol Number: 20170646; Version Date: 04 May 2020. Available online: https://cdn.clinicaltrials.gov/large-docs/95/NCT04478695/Prot_000.pdf (accessed on 18 June 2025).
- Johnson, M.L.; Dy, G.K.; Mamdani, H.; Dowlati, A.; Schoenfeld, A.J.; Pacheco, J.M.; Sanborn, R.E.; Menon, S.P.; Santiago, L.; Yaron, Y.; et al. Interim results of an ongoing phase 1/2a study of HPN328, a tri-specific, half-life extended, DLL3-targeting, T-cell engager, in patients with small cell lung cancer and other neuroendocrine cancers. J. Clin. Oncol. 2022, 40, 8566. [Google Scholar] [CrossRef]
- Moek, K.L.; Waaijer, S.J.H.; Kok, I.C.; Suurs, F.V.; Brouwers, A.H.; Menke-van der Houven van Oordt, C.W.; Wind, T.T.; Gietema, J.A.; Schröder, C.P.; Mahesh, S.V.K.; et al. (89)Zr-labeled Bispecific T-cell Engager AMG 211 PET Shows AMG 211 Accumulation in CD3-rich Tissues and Clear, Heterogeneous Tumor Uptake. Clin. Cancer Res. 2019, 25, 3517–3527. [Google Scholar] [CrossRef]
- De Vries, E. Continuous intravenous administration of AMG 211 (CEA CD3 BiTE®) in patients with relapsed/refractory gastrointestinal adenocarcinomas. In Proceedings of the 2025 ASCO ASCO Annual Meeting, Chicago, IL, USA, 30 May–3 June 2025. Abstract 148667. [Google Scholar]
- LARVOL DELTA. etevritamab (AMG 596)/Amgen. Available online: https://delta.larvol.com/Products/?ProductId=a29c1178-630d-42e8-b312-dd8dbf85a207 (accessed on 18 June 2025).
- Lopez, J.S.; Milhem, M.; Butler, M.O.; Thistlethwaite, F.; Van Tine, B.A.; D’Angelo, S.P.; Johnson, M.L.; Sato, T.; Arkenau, H.T.; Edukulla, R.; et al. Phase 1 study of IMCnyeso, a T cell receptor bispecific ImmTAC targeting NY-ESO-1-expressing malignancies. Cell Rep. Med. 2025, 6, 101994. [Google Scholar] [CrossRef]
- El-Khoueiry, A.; Saavedra, O.; Thomas, J.; Livings, C.; Garralda, E.; Hintzen, G.; Kohlhas, L.; Vanosmael, D.; Koch, J.; Rajkovic, E.; et al. First-in-Human Phase I Study of a CD16A Bispecific Innate Cell Engager, AFM24, Targeting EGFR-Expressing Solid Tumors. Clin. Cancer Res. 2025, 31, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Li, B.T.; Lee, K.W.; Pegram, M.; Sharma, M.R.; Lee, J.; Spira, A.I.; Kang, Y.K.; Moore, K.N.; Rasco, D.; Hanna, G.J.; et al. 657MO Recommended phase II dose (RP2D) selection and pharmacodynamic (PD) data of the first-in-human immune-stimulating antibody conjugate (ISAC) BDC-1001 in patients (pts) with advanced HER2-expressing solid tumors. Ann. Oncol. 2023, 34, S462–S463. [Google Scholar] [CrossRef]
Antibody Characteristic | Clinical Result | Reference | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibody Name(s) | Format | Half-Life | Incidence of ADA | Disease | Target(s) | Development Stage | Prospect | Patient Sample Size (N) | Efficacy/Outcome | ≥Grade 3 Events | Reference | |
T cell engager (Infectious disease) | ||||||||||||
IMC-M113V | ImmTAV | N/A | N/A | AIDS/HIV | CD3 × gag (HLA-A*02:01) | phase 1/2 ongoing | ongoing development | 16 | Dose-dependent delayed viral rebound and/or viremia control (18.8%) | “no serious adverse events” | [298] | |
IMC-I109V | ImmTAV | N/A | N/A | Chronic HBV infection | CD3 × env (HBV; HLA-A*02:01) | phase 1 ongoing | ongoing development | 21 | decline of serum viral surface antigen level (HBsAg); elevation in ALT and IL-6 | 0% | [155] | |
MGD014 | DART-Fc | 12 d | 8.30% | AIDS/HIV | CD3 × gp120 | phase I completed | ongoing development | 24 | N/A | “well tolerated” | [177] | |
Myeloid cell engager and B cell engager (infectious disease) | ||||||||||||
MDX-240 | bispecific | N/A | N/A | AIDS/HIV | FcγRI × gp41 | Clinical phase | development terminated | N/A | efficacy unknown; reduce infectivity in human monocyte-derived macrophages | N/A | [82] | |
T cell engager (autoimmune disease) | ||||||||||||
Blinatumomab | BiTE | N/A | N/A | multidrug-resistant rheumatoid arthritis (RA) | CD3 × CD19 | clinical (compassionate use) | ongoing development | 6 | Sustained remission at month3; reduced autoantibody level | “no serious adverse events” | [32,192] | |
Blinatumomab | BiTE | N/A | N/A | severe systemic sclerosis | CD3 × CD19 | case report | possible development | 1 | “significant improvement of symptom, regained ability to move” | “well tolerated” | [193] | |
CLN-978 | BiTE-albumin | N/A | N/A | systemic lupus erythematosus (SLE) | CD3 × CD19 × albumin | phase 1b ongoing | ongoing development | 2 | N/A | N/A | [196] | |
Myeloid cell engager and B cell engager (autoimmune disease) | ||||||||||||
MGD010 | DART-Fc | 8 d | N/A | autoimmunity | CD32B × CD79B | phase I completed | Collaborative development terminated | 8 | “decreased B cell activation with no signs of B-cell depletion” | 0% | [240] | |
dapirolizumab pegol | Fab (PEG) | N/A | N/A | autoimmunity | CD40L | phase 3 completed | ongoing development | 208 | 60.1% SRI-4 vs. control (41.1%) | 9.9% (TEAE) | [268,299] | |
antibody characteristic | clinical result | reference | ||||||||||
antibody name(s) | format | half-life | incidence of ADA | disease | target(s) | development stage | prospect | patient size (N) | ORR | CR | ≥grade 3 events | reference [1] |
T cell engager (oncology) | ||||||||||||
blinatumomab | BiTE | 1.41–2.10 h | 2% | hematological malignancy | CD3 × CD19 | FDA-approved | FDA-approved | 1373 | N/A | 54% | 80% | [28,97] |
blinatumomab + nivolumab or ipilimumab | BiTE | N/A | N/A | Relapsed/Refractory (R/R) ALL | CD3 × CD19; CTLA-4; PD-L1 | phase 1 completed | ongoing clinical development | 27 | N/A | 68% | N/A | [300] |
duvortuxizumab/MGD011/JNJ-64052781 | DART-Fc (mut) | 7.50% | N/A | B cell malignancies | CD3 × CD19 | phase 2 completed | discontinued; neurotoxicity and lack of commercial competitiveness | N/A | “some patients” | N/A | “similar to those of other CD19 TCEs” | [101,301,302,303] |
AFM11 | TandAb | 18.4–22.9 h | N/A | B cell malignancies | CD3 × CD19 | phase 1 completed | discontinued; neurotoxicity and limited efficacy | 33 | 9.10% | 0% | 27.30% | [41,42] |
Tarlatamab/AMG757 | BiTE-Fc | 5.7 d | 10% | solid tumor | CD3 × DLL | FDA-approved | FDA-approved | 188 | 36.10% | 4.20% | 71.80% | [109,304] |
Tebentafusp | ImmTAC | 7.5 h | 29–33% | solid tumor | CD3 × gp100 (HLA-A*02:01) | FDA-approved | FDA-approved | 505 | 8% | 0% | 59% | [50,132,134,305] |
Tebentafusp + durvalumab and/or tremelimumab | ImmTAC | N/A | N/A | solid tumor | CD3 × gp100 (HLA-A*02:01) | phase 1b completed | ongoing clinical development | 72 | 14% | 0%% | 40% | [306] |
AMG420/BI836909 | BiTE | “short” | 0% | relapsed/refractory multiple myeloma | CD3 × BCMA | phase 1 completed | discontinued; potentially due to toxicity and need for infusion | 42 | 31% | 12% | 48% | [102,115,307] |
Flotetuzumab/MGD006 | DART | N/A | 0.90% | acute myeloid leukemia | CD3 × CD123 | phase 1/2 completed | discontinued; replaced by PK-enhanced analog MGD024 | 88 | 36% | 11.7%% | N/A | [105,107] |
AMG330 | BiTE | 5.49 h | 4% | hematological malignancy | CD3 × CD33 | phase 1/2 completed | discontinued; toxicity and limited efficacy | 35 | 14.20% | 5.70% | 66% | [101,104,308,309] |
HPN328 | TriTAC | 71 h | N/A | relapsed/refractory metastatic SCLC, neuroendocrine prostate cancer, and other NEC | CD3 × DLL3 × albumin | phase 1/2 ongoing with updates | ongoing clinical development | 9 and 24 | 44%; 50% | 11.1% 0% | ≤10% | [46,310] |
pasotuxizumab/BAY 2010122/AMG212 | BiTE | 2–3 h | 100% | metastatic castration-resistant prostate cancer | CD3 × PSMA | phase 1 completed | ongoing clinical development | 16 | 25% | 6.25% | ≤81% | [116] |
AMG211/MT111/MEDI-565 | BiTE | 3.3 h | 0% cIV; 96.7% SC | relapsed/refractory gastrointestinal (GI) adenocarcinoma | CD3 × CEA | phase 1 completed | discontinued; high immunogenicity and unable to establish therapeutic window | 32 | N/A | N/A | 16% (all AE) | [24,101,117,311,312] |
Etevritamab/AMG596 | BiTE | N/A | N/A | EGFRvIII+ recurrent glioblastoma (RGBM) | CD3 × EGFRvIII | phase 1 completed | Terminated; business decision | 14 | 12.50% | 0% | 50% | [118,313] |
solitomab/AMG110/MT110 | BiTE | 4.5 h | 11% | refractory solid tumors | CD3 × EpCAM | phase 1 completed | discontinued; on-target dose-limiting toxicity | 63 | 1.5%: 27.7% SD | 0% | 95% | [112,128] |
IMC-C103C | ImmTAC | N/A | N/A | Post = checkpoint cutaneous melanoma | CD3 × MAGE-A4 (HLA) | phase 1 completed | ongoing clinical development | 46 | 61% for PR + SD | 0% | 31% | [146,147] |
IMCnyeso | ImmTAC | 25 h | 7% | Advanced solid tumor | CD3 × NY-ESO-1 (HLA) | phase 1 completed | ongoing clinical development | 27 | 0% | 0% | 32% | [314] |
PF-06671008 | DART-Fc | 26.6–45.8 h | 3.70% | advanced solid tumors | P- cadherin × CD3 | phase 1 completed | discontinued; lack of efficacy, high incidence of AE, may due to unsilenced Fc | 27 | 0% | 0% | 62.90% | [34,35] |
NM21-1480 | scMATCH3 (scFv3) | N/A | N/A | unresectable solid tumor | PD-L1 × 4-1BB × albumin | phase 1 completed | ongoing clinical development | 26 | 57% for PR + SD | N/A | 0% | [149] |
NK cell engager (oncology) | ||||||||||||
AFM28 | TandAb-Fc | N/A | N/A | relapsed/refractory acute malignant leukemia (R/R AML) | CD16A × CD123 | phase 1 completed | ongoing clinical development | 12 | 38.8% | 30% | 13% | [40] |
AFM24 (with atezolizumab) | tetraspecifics | 3.24–11.3 h | N/A | WT-EGFR+ metastatic NSCLC | CD16A × EGFR | phase 2 completed | ongoing clinical development | 15 | 27% | 6.70% | “no new or unexpected toxicity compared to each single agent” | [208,315] |
AFM13 (with penbrolizumab) | TandAb | 20.6 h | 56.60% | relapsed/refractory Hodgkin lymphoma | CD16A × CD30; PD-1 | phase 1b completed | ongoing clinical development | 30 | 83% | N/A | 7% | [43] |
GTB-3550 | TriKE | “short as predicted” | N/A | Relapsed/refractory AML and MDS | CD16 × IL-15 × CD33 | phase 1 completed | discontinued; replaced by VHH-based GTB-3650 | 4 | 0%; 66% for SD | 0% | “no signs of clinical immune activation or SAE’s” | [77,78,79,216] |
DF1001 | TriNKET | N/A | N/A | advanced solid tumors | CD16 × NKp46 × HER2 | phase 1/2 completed | ongoing clinical development | 36 | 13.90% | 0% | 14% | [63] |
SAR443579/IPH6101 | ANKET | N/A | N/A | Hematological malignancies | CD123 × NKp46 × CD16 | phase 1/2 ongoing | ongoing clinical development | 59 | N/A | “5 CR @ 1 mg/kg” | N/A | [64] |
Myeloid cell engager and B cell engager (oncology) | ||||||||||||
MP0317 | DARPin | 70.5 h (1 mg/kg) | N/A | oncology | CD40 × FAP | phase 1 completed | ongoing clinical development | 46 | N/A | N/A | 2.30% | [241,242] |
MP0250 | DARPin | 15–16 day | 47.6% | oncology | VEGF × HGF × albumin | phase 1b/2 completed | ongoing clinical development | 33 | 32.1% | 0% | 51.6% | [72,73] |
BDC-1001 (w/wo nivolumab) | ISAC | 4.8 d | 6.30% | solid tumor | TLR7/8 × HER2 | phase 1/2 completed | discontinued; lack of efficacy | 118 | 4.2%PR + 8.5%SD | 0% | 1.70% | [232,250,316] |
NJH395 | ISAC | N/A | 100% | oncology | TLR7 × HER2 | phase 1 completed | discontinued; lack of efficacy | 18 | N/A | N/A | N/A | [234,235,251] |
IMB071703 | Xfab/f(ab)2 | 2.45 h | N/A | recurrent or metastatic advanced solid tumor | CD40 × 4-1BB | phase 1a completed | ongoing clinical development | 7 | 0%; 16.7% SD | N/A | 0% | [239] |
Immune checkpoint blocker and Immune checkpoint agonist (oncology) | ||||||||||||
tebotelimab/MGD013 (w/wo margetuximab) | DART-Fc | 11 d | 17% | oncology | PD-1 × LAG-3; HER2 | phase 1 completed | ongoing clinical development | 353 | 11% (evaluable) | 0% | 22% | [36,37] |
lorigerlimab/MGD019 | DART-Fc | 12 d | N/A | oncology | PD-L1 × CTLA-4 | phase 1 completed | ongoing clinical development | 127 | 25.7 | 0% | 32.30% | [38,39] |
erfonrilimab/KN046 (w nab-paclitaxel) | (VHH)4-Fc | 111.0–137.4 h | N/A | metastatic triple-negative breast cancer | PD-L1 × CTLA-4 | phase 2 completed | ongoing clinical development | 27 | 44% | 0% | 66.7% (TEAE); 33.3% (SAE) | [293] |
erfonrilimab/KN046 (w lenvatinib) | (VHH)4-Fc | N/A | N/A | hepatocellular carcinoma | PD-L1 × CTLA-4 | phase 2 completed | ongoing clinical development | 55 | 52% | 0% | 27.3% TEAE | [295] |
erfonrilimab/KN046 (w nab-paclitaxel) | (VHH)4-Fc | N/A | N/A | pancreatic cancer | PD-L1 × CTLA-4 | phase 2 completed | ongoing clinical development | 53 | 45.20% | 0% | 14.3% TRAE | [297] |
erfonrilimab/KN046 (w gemcitabine) | (VHH)4-Fc | N/A | N/A | nasopharyngeal carcinoma | PD-L1 × CTLA-4 | phase 1 completed | ongoing clinical development | 59 | 15.40% | 0% | 14% TRAE | [292] |
erfonrilimab/KN046 (w chemotherapy) | (VHH)4-Fc | N/A | 67.90% | NSCLC | PD-L1 × CTLA-5 | phase 2 completed | ongoing clinical development | 87 | 46.00% | 0% | 72.4% TEAE; 37.9% s-TEAE | [294] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Massumi, M. Fragment-Based Immune Cell Engager Antibodies in Treatment of Cancer, Infectious and Autoimmune Diseases: Lessons and Insights from Clinical and Translational Studies. Antibodies 2025, 14, 52. https://doi.org/10.3390/antib14030052
Yang G, Massumi M. Fragment-Based Immune Cell Engager Antibodies in Treatment of Cancer, Infectious and Autoimmune Diseases: Lessons and Insights from Clinical and Translational Studies. Antibodies. 2025; 14(3):52. https://doi.org/10.3390/antib14030052
Chicago/Turabian StyleYang, Ge, and Mohammad Massumi. 2025. "Fragment-Based Immune Cell Engager Antibodies in Treatment of Cancer, Infectious and Autoimmune Diseases: Lessons and Insights from Clinical and Translational Studies" Antibodies 14, no. 3: 52. https://doi.org/10.3390/antib14030052
APA StyleYang, G., & Massumi, M. (2025). Fragment-Based Immune Cell Engager Antibodies in Treatment of Cancer, Infectious and Autoimmune Diseases: Lessons and Insights from Clinical and Translational Studies. Antibodies, 14(3), 52. https://doi.org/10.3390/antib14030052