Factors Associated with SARS-CoV-2 Infection Evaluated by Antibody Response in a Sample of Workers from the Emilia-Romagna Region, Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
- Information on the subject’s socio-demographic characteristics, including smoking habits and alcohol consumption;
- Clinical and medical aspects relevant to the study, including information on a possible diagnosis of SARS-CoV-2 infection and the presence of suspected symptoms for COVID-19 in the year preceding recruitment;
- Information on the employment sector and the working conditions in the months prior to the blood draw, including the adoption of preventive measures to reduce SARS-CoV-2 transmission.
2.3. Laboratory Analysis
2.4. Statistical Analyses
3. Results
3.1. Characteristics of the Study Participants
3.2. Biochemical Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 22 March 2023).
- Berselli, N.; Filippini, T.; Paduano, S.; Malavolti, M.; Modenese, A.; Gobba, F.; Borella, P.; Marchesi, I.; Vivoli, R.; Perlini, P.; et al. Seroprevalence of Anti-SARS-CoV-2 Antibodies in the Northern Italy Population before the COVID-19 Second Wave. Int. J. Occup. Med. Environ. Health 2022, 35, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Italy: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/region/euro/country/it (accessed on 22 March 2023).
- Azami, M.; Moradi, Y.; Moradkhani, A.; Aghaei, A. SARS-CoV-2 Seroprevalence around the World: An Updated Systematic Review and Meta-Analysis. Eur. J. Med. Res. 2022, 27, 81. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Population-Based Age-Stratified Seroepidemiological Investigation Protocol for COVID-19 Virus Infection, 17 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Istituto Nazionale di Statistica; Ministero della Salute. Primi Risultati dell’Indagine di Sieroprevalenza Sul SARS-CoV-2; Istituto Nazionale di Statistica: Rome, Italy, 2020; p. 10. [Google Scholar]
- Karachaliou, M.; Moncunill, G.; Espinosa, A.; Castaño-Vinyals, G.; Jiménez, A.; Vidal, M.; Santano, R.; Barrios, D.; Puyol, L.; Carreras, A.; et al. Infection Induced SARS-CoV-2 Seroprevalence and Heterogeneity of Antibody Responses in a General Population Cohort Study in Catalonia Spain. Sci. Rep. 2021, 11, 21571. [Google Scholar] [CrossRef] [PubMed]
- Anka, A.U.; Tahir, M.I.; Abubakar, S.D.; Alsabbagh, M.; Zian, Z.; Hamedifar, H.; Sabzevari, A.; Azizi, G. Coronavirus Disease 2019 (COVID-19): An Overview of the Immunopathology, Serological Diagnosis and Management. Scand. J. Immunol. 2021, 93, e12998. [Google Scholar] [CrossRef] [PubMed]
- Chvatal-Medina, M.; Mendez-Cortina, Y.; Patiño, P.J.; Velilla, P.A.; Rugeles, M.T. Antibody Responses in COVID-19: A Review. Front. Immunol. 2021, 12, 633184. [Google Scholar] [CrossRef]
- Paduano, S.; Galante, P.; Berselli, N.; Ugolotti, L.; Modenese, A.; Poggi, A.; Malavolti, M.; Turchi, S.; Marchesi, I.; Vivoli, R.; et al. Seroprevalence Survey of Anti-SARS-CoV-2 Antibodies in a Population of Emilia-Romagna Region, Northern Italy. Int. J. Environ. Res. Public Health 2022, 19, 7882. [Google Scholar] [CrossRef] [PubMed]
- Stockholm: ECDC COVID-19 Clusters and Outbreaks in Occupational Settings in the EU/EEA and the UK. Available online: https://www.ecdc.europa.eu/en/publications-data/covid-19-clusters-and-outbreaks-occupational-settings-eueea-and-uk (accessed on 23 March 2023).
- Günther, F.; Einhauser, S.; Peterhoff, D.; Wiegrebe, S.; Niller, H.H.; Beileke, S.; Steininger, P.; Burkhardt, R.; Küchenhoff, H.; Gefeller, O.; et al. Higher Infection Risk among Health Care Workers and Lower Risk among Smokers Persistent across SARS-CoV-2 Waves-Longitudinal Results from the Population-Based TiKoCo Seroprevalence Study. Int. J. Environ. Res. Public Health 2022, 19, 16996. [Google Scholar] [CrossRef] [PubMed]
- Istituto Nazionale per L’assicurazione contro gli Infortuni sul Lavoro. I dati sulle denunce da COVID-19 (monitoraggio al 31 dicembre 2022). Available online: https://www.inail.it/cs/internet/comunicazione/covid-19-prodotti-informativi/report-covid-19.html (accessed on 22 March 2023).
- Modenese, A.; Mazzoli, T.; Berselli, N.; Ferrari, D.; Bargellini, A.; Borella, P.; Filippini, T.; Marchesi, I.; Paduano, S.; Vinceti, M.; et al. Frequency of Anti-SARS-CoV-2 Antibodies in Various Occupational Sectors in an Industrialized Area of Northern Italy from May to October 2020. Int. J. Environ. Res. Public Health 2021, 18, 7948. [Google Scholar] [CrossRef]
- Eapen, M.S.; Lu, W.; Hackett, T.L.; Singhera, G.K.; Thompson, I.E.; McAlinden, K.D.; Hardikar, A.; Weber, H.C.; Haug, G.; Wark, P.A.B.; et al. Dysregulation of Endocytic Machinery and ACE2 in Small Airways of Smokers and COPD Patients Can Augment Their Susceptibility to SARS-CoV-2 (COVID-19) Infections. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 320, L158–L163. [Google Scholar] [CrossRef]
- Wark, P.A.B.; Pathinayake, P.S.; Eapen, M.S.; Sohal, S.S. Asthma, COPD and SARS-CoV-2 Infection (COVID-19): Potential Mechanistic Insights. Eur. Respir. J. 2021, 58, 2100920. [Google Scholar] [CrossRef]
- Yang, Q.; Li, J.; Zhang, Z.; Wu, X.; Liao, T.; Yu, S.; You, Z.; Hou, X.; Ye, J.; Liu, G.; et al. Clinical Characteristics and a Decision Tree Model to Predict Death Outcome in Severe COVID-19 Patients. BMC Infect. Dis. 2021, 21, 783. [Google Scholar] [CrossRef] [PubMed]
- Zaki, N.; Alashwal, H.; Ibrahim, S. Association of Hypertension, Diabetes, Stroke, Cancer, Kidney Disease, and High-Cholesterol with COVID-19 Disease Severity and Fatality: A Systematic Review. Diabetes Metab. Syndr. 2020, 14, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Romero-Gameros, C.A.; Vargas-Ortega, G.; Rendón-Macias, M.E.; Cuevas-García, C.F.; Colín-Martínez, T.; Sánchez-Hurtado, L.A.; Balcázar-Hernández, L.J.; De la Cruz-Rodríguez, I.E.; Pérez-Dionisio, E.K.; Retana-Torres, P.M.; et al. Risk Factors Associated with Mortality among Patients with COVID-19: Analysis of a Cohort of 1213 Patients in a Tertiary Healthcare Center. J. Clin. Med. 2022, 11, 2780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wang, C.; Duan, B.; Yang, P.; Wu, J.; Zhang, Q. Altered Lipid Profile in COVID-19 Patients and Metabolic Reprogramming. Front. Microbiol. 2022, 13, 863802. [Google Scholar] [CrossRef]
- Gasmi, A.; Peana, M.; Pivina, L.; Srinath, S.; Benahmed, A.G.; Semenova, Y.; Menzel, A.; Dadar, M.; Bjørklund, G. Interrelations between COVID-19 and Other Disorders. Clin. Immunol. 2021, 224, 108651. [Google Scholar] [CrossRef]
- Ejaz, H.; Alsrhani, A.; Zafar, A.; Javed, H.; Junaid, K.; Abdalla, A.E.; Abosalif, K.O.A.; Ahmed, Z.; Younas, S. COVID-19 and Comorbidities: Deleterious Impact on Infected Patients. J. Infect. Public Health 2020, 13, 1833–1839. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, H.; Yang, B.; Lee, S.-K.; Park, T.S.; Park, D.W.; Moon, J.-Y.; Kim, T.-H.; Sohn, J.W.; Yoon, H.J.; et al. Interstitial Lung Disease Increases Susceptibility to and Severity of COVID-19. Eur. Respir. J. 2021, 58, 2004125. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical Predictors of Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef]
- Daneshkhah, A.; Agrawal, V.; Eshein, A.; Subramanian, H.; Roy, H.K.; Backman, V. Evidence for Possible Association of Vitamin D Status with Cytokine Storm and Unregulated Inflammation in COVID-19 Patients. Aging Clin. Exp. Res. 2020, 32, 2141–2158. [Google Scholar] [CrossRef]
- Junaid, K.; Ejaz, H.; Abdalla, A.E.; Abosalif, K.O.A.; Ullah, M.I.; Yasmeen, H.; Younas, S.; Hamam, S.S.M.; Rehman, A. Effective Immune Functions of Micronutrients against SARS-CoV-2. Nutrients 2020, 12, 2992. [Google Scholar] [CrossRef]
- Pandya, M.; Shah, S.; Dhanalakshmi, M.; Juneja, T.; Patel, A.; Gadnayak, A.; Dave, S.; Das, K.; Das, J. Unravelling Vitamin B12 as a Potential Inhibitor against SARS-CoV-2: A Computational Approach. Inform. Med. Unlocked 2022, 30, 100951. [Google Scholar] [CrossRef] [PubMed]
- Raha, S.; Mallick, R.; Basak, S.; Duttaroy, A.K. Is Copper Beneficial for COVID-19 Patients? Med. Hypotheses 2020, 142, 109814. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.S. COVID-19 Pandemic: Can Maintaining Optimal Zinc Balance Enhance Host Resistance? Tohoku J. Exp. Med. 2020, 251, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Salaris, C.; Scarpa, M.; Elli, M.; Bertolini, A.; Guglielmetti, S.; Pregliasco, F.; Blandizzi, C.; Brun, P.; Castagliuolo, I. Protective Effects of Lactoferrin against SARS-CoV-2 Infection In Vitro. Nutrients 2021, 13, 328. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, H.; Jian, Z.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L.; et al. Immunotoxicity of Nickel: Pathological and Toxicological Effects. Ecotoxicol. Environ. Saf. 2020, 203, 111006. [Google Scholar] [CrossRef]
- Muhammad, Y.; Kani, Y.A.; Iliya, S.; Muhammad, J.B.; Binji, A.; El-Fulaty Ahmad, A.; Kabir, M.B.; Umar Bindawa, K.; Ahmed, A. Deficiency of Antioxidants and Increased Oxidative Stress in COVID-19 Patients: A Cross-Sectional Comparative Study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021, 9, 2050312121991246. [Google Scholar] [CrossRef] [PubMed]
- United Nations International Standard. Industrial Classification of All Economic Activities (ISIC), Rev. 4; United Nations: New York, NY, USA, 2008; p. 307. [Google Scholar]
- Forbes, G.B. Human Body Composition; Springer: New York, NY, USA, 1987; ISBN 978-1-4612-9100-8. [Google Scholar]
- Usman, M.S.; Siddiqi, T.J.; Khan, M.S.; Patel, U.K.; Shahid, I.; Ahmed, J.; Kalra, A.; Michos, E.D. Is There a Smoker’s Paradox in COVID-19? BMJ Evid.-Based Med. 2021, 26, 279–284. [Google Scholar] [CrossRef]
- Changeux, J.-P.; Amoura, Z.; Rey, F.A.; Miyara, M. A Nicotinic Hypothesis for COVID-19 with Preventive and Therapeutic Implications. C. R. Biol. 2020, 343, 33–39. [Google Scholar] [CrossRef]
- Farsalinos, K.; Barbouni, A.; Poulas, K.; Polosa, R.; Caponnetto, P.; Niaura, R. Current Smoking, Former Smoking, and Adverse Outcome among Hospitalized COVID-19 Patients: A Systematic Review and Meta-Analysis. Ther. Adv. Chronic Dis. 2020, 11, 2040622320935765. [Google Scholar] [CrossRef]
- Paleiron, N.; Mayet, A.; Marbac, V.; Perisse, A.; Barazzutti, H.; Brocq, F.-X.; Janvier, F.; Dautzenberg, B.; Bylicki, O. Impact of Tobacco Smoking on the Risk of COVID-19: A Large Scale Retrospective Cohort Study. Nicotine Tob. Res. 2021, 23, 1398–1404. [Google Scholar] [CrossRef]
- Aggarwal, G.; Cheruiyot, I.; Aggarwal, S.; Wong, J.; Lippi, G.; Lavie, C.J.; Henry, B.M.; Sanchis-Gomar, F. Association of Cardiovascular Disease with Coronavirus Disease 2019 (COVID-19) Severity: A Meta-Analysis. Curr. Probl. Cardiol. 2020, 45, 100617. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Henry, B.M. Chronic Obstructive Pulmonary Disease Is Associated with Severe Coronavirus Disease 2019 (COVID-19). Respir. Med. 2020, 167, 105941. [Google Scholar] [CrossRef] [PubMed]
- de Lusignan, S.; Dorward, J.; Correa, A.; Jones, N.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Byford, R.; Dabrera, G.; Elliot, A.; et al. Risk Factors for SARS-CoV-2 among Patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre Primary Care Network: A Cross-Sectional Study. Lancet Infect. Dis. 2020, 20, 1034–1042. [Google Scholar] [CrossRef]
- Theu, J.A.; Kabaghe, A.N.; Bello, G.; Chitsa-Banda, E.; Kagoli, M.; Auld, A.; Mkungudza, J.; O’Malley, G.; Bangara, F.F.; Peacocke, E.F.; et al. SARS-CoV-2 Prevalence in Malawi Based on Data from Survey of Communities and Health Workers in 5 High-Burden Districts, October 2020. Emerg. Infect. Dis. 2022, 28, S76–S84. [Google Scholar] [CrossRef] [PubMed]
- Woodby, B.; Arnold, M.M.; Valacchi, G. SARS-CoV-2 Infection, COVID-19 Pathogenesis, and Exposure to Air Pollution: What Is the Connection? Ann. N. Y. Acad. Sci. 2021, 1486, 15–38. [Google Scholar] [CrossRef]
- Filippini, T.; Rothman, K.J.; Cocchio, S.; Narne, E.; Mantoan, D.; Saia, M.; Goffi, A.; Ferrari, F.; Maffeis, G.; Orsini, N.; et al. Associations between Mortality from COVID-19 in Two Italian Regions and Outdoor Air Pollution as Assessed through Tropospheric Nitrogen Dioxide. Sci. Total Environ. 2021, 760, 143355. [Google Scholar] [CrossRef]
- Long, Q.-X.; Liu, B.-Z.; Deng, H.-J.; Wu, G.-C.; Deng, K.; Chen, Y.-K.; Liao, P.; Qiu, J.-F.; Lin, Y.; Cai, X.-F.; et al. Antibody Responses to SARS-CoV-2 in Patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- De Giorgi, V.; West, K.A.; Henning, A.N.; Chen, L.N.; Holbrook, M.R.; Gross, R.; Liang, J.; Postnikova, E.; Trenbeath, J.; Pogue, S.; et al. Naturally Acquired SARS-CoV-2 Immunity Persists for Up to 11 Months Following Infection. J. Infect. Dis. 2021, 224, 1294–1304. [Google Scholar] [CrossRef]
- Ladage, D.; Rösgen, D.; Schreiner, C.; Ladage, D.; Adler, C.; Harzer, O.; Braun, R.J. Persisting Antibody Response to SARS-CoV-2 in a Local Austrian Population. Front. Med. 2021, 8, 653630. [Google Scholar] [CrossRef]
- Kurahashi, Y.; Sutandhio, S.; Furukawa, K.; Tjan, L.H.; Iwata, S.; Sano, S.; Tohma, Y.; Ohkita, H.; Nakamura, S.; Nishimura, M.; et al. Cross-Neutralizing Breadth and Longevity Against SARS-CoV-2 Variants After Infections. Front. Immunol. 2022, 13, 773652. [Google Scholar] [CrossRef]
- Cardillo, L.; de Martinis, C.; Viscardi, M.; Esposito, C.; Sannino, E.; Lucibelli, G.; Limone, A.; Pellino, S.; Anastasio, R.; Pellicanò, R.; et al. SARS-CoV-2 Quantitative Real Time PCR and Viral Loads Analysis among Asymptomatic and Symptomatic Patients: An Observational Study on an Outbreak in Two Nursing Facilities in Campania Region (Southern Italy). Infect. Agents Cancer 2021, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.A.; Quandelacy, T.M.; Kada, S.; Prasad, P.V.; Steele, M.; Brooks, J.T.; Slayton, R.B.; Biggerstaff, M.; Butler, J.C. SARS-CoV-2 Transmission from People Without COVID-19 Symptoms. JAMA Netw. Open 2021, 4, e2035057. [Google Scholar] [CrossRef] [PubMed]
- Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Dittrich, S.; et al. Signs and Symptoms to Determine If a Patient Presenting in Primary Care or Hospital Outpatient Settings Has COVID-19 Disease. Cochrane Database Syst. Rev. 2020, 2020, CD013665. [Google Scholar] [CrossRef]
- Safiabadi Tali, S.H.; LeBlanc, J.J.; Sadiq, Z.; Oyewunmi, O.D.; Camargo, C.; Nikpour, B.; Armanfard, N.; Sagan, S.M.; Jahanshahi-Anbuhi, S. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin. Microbiol. Rev. 2021, 34, e00228-20. [Google Scholar] [CrossRef] [PubMed]
- Khanlari, S.; Johnstone, T.; Witteveen-Roberts, A.; Nassar, N.; NSW Public Health Network. COVID-19 in Non-Healthcare Workplace Settings in NSW, Australia. Aust. N. Z. J. Public Health 2022, 46, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Neglia, C.; Affanni, P.; Colucci, M.E.; Argentiero, A.; Veronesi, L.; Messina, G.; Deolmi, M.; Principi, N. Epidemiology of SARS-CoV-2 Infection Evaluated by Immunochromatographic Rapid Testing for the Determination of IgM and IgG Against SARS-CoV-2 in a Cohort of Mask Wearing Workers in the Metal-Mechanical Sector in an Area with a High Incidence of COVID-19. Front. Public Health 2021, 9, 628098. [Google Scholar] [CrossRef] [PubMed]
- Doung-Ngern, P.; Suphanchaimat, R.; Panjangampatthana, A.; Janekrongtham, C.; Ruampoom, D.; Daochaeng, N.; Eungkanit, N.; Pisitpayat, N.; Srisong, N.; Yasopa, O.; et al. Case-Control Study of Use of Personal Protective Measures and Risk for SARS-CoV-2 Infection, Thailand. Emerg. Infect. Dis. 2020, 26, 2607–2616. [Google Scholar] [CrossRef] [PubMed]
- Utulu, R.; Ajayi, I.O.; Bello, S.; Balogun, M.S.; Madubueze, U.C.; Adeyemi, I.T.; Omoju, O.T.; Adeke, A.S.; Adenekan, A.O.; Iyare, O. Risk Factors for COVID-19 Infection and Disease Severity in Nigeria: A Case-Control Study. Pan Afr. Med. J. 2022, 41, 317. [Google Scholar] [CrossRef]
- Kerai, S.; Singh, R.; Saxena, K.N.; Desai, S.D. Assessment of Risk Factors for Coronavirus Disease-2019 in Healthcare Workers: A Case-Control Study. Indian J. Crit. Care Med. 2022, 26, 76–84. [Google Scholar] [CrossRef]
- Abboah-Offei, M.; Salifu, Y.; Adewale, B.; Bayuo, J.; Ofosu-Poku, R.; Opare-Lokko, E.B.A. A Rapid Review of the Use of Face Mask in Preventing the Spread of COVID-19. Int. J. Nurs. Stud. Adv. 2021, 3, 100013. [Google Scholar] [CrossRef]
- Gholami, M.; Fawad, I.; Shadan, S.; Rowaiee, R.; Ghanem, H.; Hassan Khamis, A.; Ho, S.B. COVID-19 and Healthcare Workers: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2021, 104, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Deschasaux-Tanguy, M.; Srour, B.; Bourhis, L.; Arnault, N.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Allègre, J.; Allès, B.; Andreeva, V.A.; et al. Nutritional Risk Factors for SARS-CoV-2 Infection: A Prospective Study within the NutriNet-Santé Cohort. BMC Med. 2021, 19, 290. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Koolivand, Z.; Mohamadi, M.B.; Zahedi, A.; Ghasemnezhad, M.; Sabati, Z.; Chamkouri, N. Determination of B Vitamins by Double-Vortex-Ultrasonic Assisted Dispersive Liquid-Liquid Microextraction and Evaluation of Their Possible Roles in Susceptibility to COVID-19 Infection: Hybrid Box-Behnken Design and Genetic Algorithm. J. Chromatogr. Sci. 2022, 60, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Sheybani, Z.; Heydari Dokoohaki, M.; Negahdaripour, M.; Dehdashti, M.; Zolghadr, H.; Moghadami, M.; Masoompour, S.M.; Zolghadr, A.R. The Interactions of Folate with the Enzyme Furin: A Computational Study. RSC Adv. 2021, 11, 23815–23824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pang, Y.; Xu, B.; Chen, X.; Liang, S.; Hu, J.; Luo, X. Folic Acid Restricts SARS-CoV-2 Invasion by Methylating ACE2. Front. Microbiol. 2022, 13, 980903. [Google Scholar] [CrossRef]
- Courtemanche, C.; Elson-Schwab, I.; Mashiyama, S.T.; Kerry, N.; Ames, B.N. Folate Deficiency Inhibits the Proliferation of Primary Human CD8+ T Lymphocytes in Vitro. J. Immunol. 2004, 173, 3186–3192. [Google Scholar] [CrossRef]
- Ferrari, M.; Di Marco, L.; Pivetti, A.; Paduano, S.; Vecchi, C.; Bernabucci, V.; Critelli, R.M.; Lasagni, S.; De Maria, M.; Venturelli, D.; et al. Long-Term SARS-CoV-2 Antibody Seroprevalence in Blood Donors, Italy. Emerg Infect Dis. 2023, 29, 1479–1481. [Google Scholar] [CrossRef]
- Istituto Superiore di Sanità. Prevalenza e Distribuzione Delle Varianti del Virus SARS-CoV-2 di Interesse per la Sanità Pubblica in Italia. Rapporto n. 2 Dell’11 Giugno 2021 (Dati Aggiornati al 6 Giugno 2021). Available online: https://www.epicentro.iss.it/coronavirus/pdf/sars-cov-2-monitoraggio-varianti-rapporti-periodici-11-giugno-2021.pdf (accessed on 22 March 2023).
Characteristics | Cases (n = 166) | Controls (n = 239) |
---|---|---|
Sex n (%) | ||
Female | 95 (57.2) | 133 (55.7) |
Male | 71 (42.8) | 106 (44.3) |
Age (years) (M ± SD) | 50.6 ± 12.4 | 50.6 ± 11.6 |
Age class n (%) | ||
<40 | 30 (18.1) | 37 (15.6) |
40–49 | 38 (22.9) | 64 (27.0) |
50–59 | 50 (30.1) | 80 (33.8) |
≥60 | 48 (28.9) | 56 (23.6) |
BMI n (%) | ||
Underweight (<18.5) | 6 (3.6) | 6 (2.5) |
Normal weight (18.5–24.9) | 95 (57.6) | 125 (52.5) |
Overweight (25.0–29.9) | 44 (26.7) | 84 (35.3) |
Obesity (≥30.0) | 20 (12.1) | 23 (9.7) |
Smoking habit n (%) * | ||
Smokers (≥1 cigarette/day) | 19 (11.5) | 48 (20.2) |
Non smokers | 146 (88.5) | 190 (79.8) |
Living place n (%) * | ||
Urban area | 102 (61.8) | 135 (57.0) |
Rural area | 40 (24.2) | 65 (27.4) |
Industrial area | 6 (3.7) | 1 (0.4) |
Other | 17 (10.3) | 36 (15.2) |
SARS-CoV-2 infection diagnosis confirmed with swab n (%) * | ||
Yes | 116 (70.3) | 30 (12.7) |
No | 49 (29.7) | 206 (87.3) |
Previous symptoms suspected for COVID-19 n (%) * | ||
Yes | 140 (84.3) | 120 (50.2) |
No | 26 (15.7) | 119 (49.8) |
Clinical conditions n (%) | ||
Diabetes | 4 (2.4) | 2 (0.8) |
Respiratory disease | 16 (9.7) | 30 (12.6) |
Cardiovascular disease | 43 (26.1) | 62 (26.1) |
Cancer | 17 (10.3) | 26 (10.9) |
Occupational Sector | Cases n (%) | Controls n (%) |
---|---|---|
Manufacturing activities (C) | 71 (57.7) | 96 (54.9) |
Wholesale and retail trade; repair of motor vehicles and motorcycles (G) | 9 (7.3) | 16 (9.1) |
Information and communication services; financial and insurance activities; real estate activities; professional scientific and technical activities; administrative and support service activities (J, K, L, M, N) | 16 (13.0) | 19 (10.9) |
Public administration and defense; compulsory social security (O) | 3 (2.4) | 6 (3.4) |
Education (P) | 7 (5.7) | 7 (4.0) |
Human health and social work activities (Q) | 6 (4.9) | 10 (5.7) |
Arts, entertainment, and recreation; other service activities (R, S) | 3 (2.5) | 6 (3.4) |
Agriculture, forestry, and fishing; electricity, gas, steam, and air conditioning supply; construction; transportation and storage; accommodation and food service activities (A, D, F, H, I) | 8 (6.5) | 15 (8.6) |
Manufacturing Activities | Total n (%) | Cases (n = 71) n (%) | Controls (n = 96) n (%) |
---|---|---|---|
Ceramic | 71 (42.5) | 44 (62.0) | 27 (28.1) |
Chemical–pharmaceutical | 39 (23.3) | 5 (7.0) | 34 (35.4) |
Metal–mechanical | 29 (17.4) | 7 (9.9) | 22 (22.9) |
Other | 28 (16.8) | 15 (21.1) | 13 (13.6) |
Preventive Measures | Cases n (%) | Controls n (%) |
---|---|---|
FFP2 mask use | ||
No or rarely | 89 (65.4) | 115 (58.7) |
Yes | 47 (34.6) | 81 (41.3) |
Hand hygiene | ||
<5 times/day | 54 (39.4) | 61 (31.0) |
≥5 times/day | 83 (60.6) | 136 (69.0) |
Preventive measures overall | ||
Low adherence (no or rare use of the FFP2 mask and hand hygiene < 5 times/day) | 36 (55.4) | 42 (40.8) |
High adherence (FFP2 mask use and hand hygiene ≥ 5 times/day) | 29 (44.6) | 61 (59.2) |
Biochemical Parameters | Cases Median (Q1; Q3) | Controls Median (Q1; Q3) |
---|---|---|
Total cholesterol (mg/dL) | 194 (165; 234) | 200 (164; 222) |
HDL cholesterol (mg/dL) | 56 (44; 69) | 55 (43; 67) |
LDL cholesterol (mg/dL) | 109 (90; 138) | 117 (95; 139) |
Triglycerides (mg/dL) | 98 (66; 142) | 92 (68; 129) |
Sideraemia (µg/dL) | 97.0 (71.5; 124.0) | 97.0 (74.0; 127.0) |
Folates (ng/mL) * | 2.6 (1.7; 4.2) | 3.0 (2.1; 5.0) |
Vitamin B12 (pg/mL) | 369.1 (277.1; 464.0) | 364.5 (277.0; 472.4) |
Vitamin D (ng/mL) | 22.1 (16.5; 27.9) | 21.2 (14.7; 29.1) |
Copper (µg/L) | 1128.0 (970.0; 1261.0) | 1121.0 (994.0; 1270.5) |
Zinc (µg/L) | 936 (828; 1040) | 942 (836; 1064) |
Nickel (µg/L) | 0.73 (0.52; 0.95) | 0.74 (0.56; 0.92) |
Chromium (µg/L) | 0.62 (0.52; 0.79) | 0.61 (0.48; 0.74) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paduano, S.; Granata, M.; Turchi, S.; Modenese, A.; Galante, P.; Poggi, A.; Marchesi, I.; Frezza, G.; Dervishaj, G.; Vivoli, R.; et al. Factors Associated with SARS-CoV-2 Infection Evaluated by Antibody Response in a Sample of Workers from the Emilia-Romagna Region, Northern Italy. Antibodies 2023, 12, 77. https://doi.org/10.3390/antib12040077
Paduano S, Granata M, Turchi S, Modenese A, Galante P, Poggi A, Marchesi I, Frezza G, Dervishaj G, Vivoli R, et al. Factors Associated with SARS-CoV-2 Infection Evaluated by Antibody Response in a Sample of Workers from the Emilia-Romagna Region, Northern Italy. Antibodies. 2023; 12(4):77. https://doi.org/10.3390/antib12040077
Chicago/Turabian StylePaduano, Stefania, Michele Granata, Sara Turchi, Alberto Modenese, Pasquale Galante, Alessandro Poggi, Isabella Marchesi, Giuseppina Frezza, Giulia Dervishaj, Roberto Vivoli, and et al. 2023. "Factors Associated with SARS-CoV-2 Infection Evaluated by Antibody Response in a Sample of Workers from the Emilia-Romagna Region, Northern Italy" Antibodies 12, no. 4: 77. https://doi.org/10.3390/antib12040077
APA StylePaduano, S., Granata, M., Turchi, S., Modenese, A., Galante, P., Poggi, A., Marchesi, I., Frezza, G., Dervishaj, G., Vivoli, R., Verri, S., Marchetti, S., Gobba, F., & Bargellini, A. (2023). Factors Associated with SARS-CoV-2 Infection Evaluated by Antibody Response in a Sample of Workers from the Emilia-Romagna Region, Northern Italy. Antibodies, 12(4), 77. https://doi.org/10.3390/antib12040077