Multiplex Bioanalytical Methods for Comprehensive Characterization and Quantification of the Unique Complementarity-Determining-Region Deamidation of MEDI7247, an Anti-ASCT2 Pyrrolobenzodiazepine Antibody–Drug Conjugate
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Capture Reagent Selection
2.3. Reference Material Characterization
2.4. Method Qualification and Sample Testing
2.5. Pharmacokinetic Parameter Calculation
2.6. Characterization of Iso-Aspartic Acid Reference Material via EAD
3. Results
3.1. Characterization of Reference Material
3.2. Impact of Deamidation on MEDI7247 Capture with Anti-IDs and Anti-PBD Antibody
3.3. Enzyme Selection and Unique Peptide Selection
3.4. Method Qualification
3.5. Clinical Deamidation Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scalise, M.; Pochini, L.; Console, L.; Losso, M.A.; Indiveri, C. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front. Cell Dev. Biol. 2018, 6, 96. [Google Scholar] [CrossRef]
- Hassanein, M.; Hoeksema, M.D.; Shiota, M.; Qian, J.; Harris, B.K.; Chen, H.; Clark, J.E.; Alborn, W.E.; Eisenberg, R.; Massion, P.P. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 2013, 19, 560–570. [Google Scholar] [CrossRef]
- Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer 2016, 16, 619–634. [Google Scholar] [CrossRef]
- Wise, D.R.; Thompson, C.B. Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci. 2010, 35, 427–433. [Google Scholar] [CrossRef]
- Zhang, J.; Pavlova, N.N.; Thompson, C.B. Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine. EMBO J. 2017, 36, 1302–1315. [Google Scholar] [CrossRef]
- A Multiple Ascending Dose Study of MEDI7247 in Patients with Selected Relapsed/Refractory Hematological Malignancies. Available online: https://clinicaltrials.gov/study/NCT03106428 (accessed on 8 September 2023).
- Jiang, H.; Zhang, N.; Tang, T.; Feng, F.; Sun, H.; Qu, W. Target the human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and Future for Novel Cancer Therapy. Pharmacol. Res. 2020, 158, 104844. [Google Scholar] [CrossRef]
- Pore, N.; Borrok, M.J.; Rebellato, M.; Hinrichs, M.; Schifferli, K.P.; Monks, N.R.; Tammali, R.; Herbst, R.; Coats, S.R.; Tice, D.A. Abstract LB-296: Discovery and development of MEDI7247, a novel Pyrrolobenzodiazepine (PBD)-based antibody drug conjugate targeting ASCT2, for treating hematological and solid cancers. Cancer Res. 2018, 78, LB-296. [Google Scholar] [CrossRef]
- Schifferli, K.P.; Monks, N.R.; Tammali, R.; Borrok, M.J.; Flynn, M.G.; Hurt, E.M.; Coats, S.R.; Herbst, R.; Tice, D.A.; Pore, N. Abstract LB-298: MEDI7247: A first in class antibody drug conjugate targeting ASCT2 in a range of solid tumors. Cancer Res. 2018, 78, LB-298. [Google Scholar] [CrossRef]
- Fathi, A.T.; Donnellan, W.B.; Lyons, R.M.; Maris, M.B.; Kim, T.M.; Kim, W.S.; Schiller, G.J.; Abboud, C.N.; Arellano, M.L.; Cull, E.H.; et al. A phase 1 multicenter, open-label, dose-escalation and dose-expansion study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, immunogenicity, and antitumor activity of MEDI7247 in patients with select relapsed/refractory hematologic malignancies. J. Clin. Oncol. 2018, 36, TPS2603. [Google Scholar] [CrossRef]
- A Multiple Ascending Dose Study of MEDI7247 in Advanced or Metastatic Solid Tumors. Available online: https://clinicaltrials.gov/study/NCT03811652 (accessed on 8 September 2023).
- Robinson, N.E. Protein deamidation. Proc. Natl. Acad. Sci. USA 2002, 99, 5283–5288. [Google Scholar] [CrossRef]
- Gaza-Bulseco, G.; Li, B.; Bulseco, A.; Liu, H.C. Method to differentiate asn deamidation that occurred prior to and during sample preparation of a monoclonal antibody. Anal. Chem. 2008, 80, 9491–9498. [Google Scholar] [CrossRef]
- Robinson, A.B.; Tedro, S. Sequence dependent deamidation rates for model peptides of hen egg-white lysozyme. Int. J. Pept. Protein Res. 1973, 5, 275–278. [Google Scholar] [CrossRef]
- Delmar, J.A.; Wang, J.; Choi, S.W.; Martins, J.A.; Mikhail, J.P. Machine Learning Enables Accurate Prediction of Asparagine Deamidation Probability and Rate. Mol. Ther. Methods Clin. Dev. 2019, 15, 264–274. [Google Scholar] [CrossRef]
- Sydow, J.F.; Lipsmeier, F.; Larraillet, V.; Hilger, M.; Mautz, B.; Mølhøj, M.; Kuentzer, J.; Klostermann, S.; Schoch, J.; Voelger, H.R.; et al. Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS ONE 2014, 9, e100736. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Huang, M.; Lewis, M.J.; Hu, P. Structure Based Prediction of Asparagine Deamidation Propensity in Monoclonal Antibodies. MAbs 2018, 10, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.D.; van Enk, J.Z.; Flynn, G.C. Human antibody Fc deamidation in vivo. Biologicals 2009, 37, 313–322. [Google Scholar] [CrossRef]
- Liu, L.; Xu, K.; Li, J.; Maia, M.; Mathieu, M.; Elliott, R.; Yang, J.; Nijem, I.; Kaur, S. Optimizing hybrid LC-MS/MS binding conditions is critical: Impact of biotransformation on quantification of trastuzumab. Bioanalysis 2018, 10, 1819–1831. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Lin, S.; De Mel, N.; Parupudi, A.; Delmar, J.; Pandey, M.; Wang, X.; Wang, J. Deamidation in Moxetumomab Pasudotox Leading to Conformational Change and Immunotoxin Activity Loss. J. Pharm. Sci. 2020, 109, 2676–2683. [Google Scholar] [CrossRef]
- Lu, X.; Machiesky, L.A.; De Mel, N.; Du, Q.; Xu, W.; Washabaugh, M.; Jiang, X.-R.; Wang, J. Characterization of IgG1 Fc Deamidation at Asparagine 325 and Its Impact on Antibody-dependent Cell-mediated Cytotoxicity and FcγRIIIa Binding. Sci. Rep. 2020, 10, 383. [Google Scholar] [CrossRef]
- Vlasak, J.; Bussat, M.C.; Wang, S.; Wagner-Rousset, E.; Schaefer, M.; Klinguer-Hamour, C.; Kirchmeier, M.; Corvaïa, N.; Ionescu, R.; Beck, A. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal. Biochem. 2009, 392, 145–154. [Google Scholar] [CrossRef]
- Sinha, S.; Zhang, L.; Duan, S.; Williams, T.D.; Vlasak, J.; Ionescu, R.; Topp, E.M. Effect of protein structure on deamidation rate in the Fc fragment of an IgG1 monoclonal antibody. Protein Sci. 2009, 18, 1573–1584. [Google Scholar] [CrossRef]
- Huang, L.; Lu, J.; Wroblewski, V.J.; Beals, J.M.; Riggin, R.M. In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal. Chem. 2005, 77, 1432–1439. [Google Scholar] [CrossRef]
- Bults, P.; Bischoff, R.; Bakker, H.; Gietema, J.A.; van de Merbel, N.C. LC-MS/MS-Based Monitoring of In Vivo Protein Biotransformation: Quantitative Determination of Trastuzumab and Its Deamidation Products in Human Plasma. Anal. Chem. 2016, 88, 1871–1877. [Google Scholar] [CrossRef]
- Bults, P.; van der Voort, A.; Meijer, C.; Sonke, G.S.; Bischoff, R.; van de Merbel, N.C. Analytical and pharmacological consequences of the in vivo deamidation of trastuzumab and pertuzumab. Anal. Bioanal. Chem. 2022, 414, 1513–1524. [Google Scholar] [CrossRef]
- Saber, H.; Simpson, N.; Ricks, T.K.; Leighton, J.K. An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates. Regul. Toxicol. Pharmacol. 2019, 107, 104429. [Google Scholar] [CrossRef]
- Mu, R.; Yuan, J.; Huang, Y.; Meissen, J.K.; Mou, S.; Liang, M.; Rosenbaum, A.I. Bioanalytical Methods and Strategic Perspectives Addressing the Rising Complexity of Novel Bioconjugates and Delivery Routes for Biotherapeutics. BioDrugs 2022, 36, 181–196. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 8 September 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: http://ggplot2.org (accessed on 8 September 2023).
- O’Connor, P.B.; Cournoyer, J.J.; Pitteri, S.J.; Chrisman, P.A.; McLuckey, S.A. Differentiation of aspartic and isoaspartic acids using electron transfer dissociation. J. Am. Soc. Mass Spectrom. 2006, 17, 15–19. [Google Scholar] [CrossRef]
- EMA. Guideline on Bioanalytical Method Validation. 2011. Available online: https://www.ema.europa.eu/en/bioanalytical-method-validation-scientific-guideline (accessed on 8 September 2023).
- FDA. Bioanalytical Method Validation Guidance for Industry. 2018. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed on 8 September 2023).
- Jefferis, R. Posttranslational Modifications and the Immunogenicity of Biotherapeutics. J. Immunol. Res. 2016, 2016, 5358272. [Google Scholar] [CrossRef]
- Gao, X.; Wang, W.; Tesar, D.; Wei, B.; Eschelbach, J.; Kelley, R.F.; Jiang, G. An Approach to Bioactivity Assessment for Critical Quality Attribute Identification Based on Antibody-Antigen Complex Structure. J. Pharm. Sci. 2021, 110, 1652–1660. [Google Scholar] [CrossRef]
- Füssl, F.; Barry, C.S.; Pugh, K.M.; Chooi, K.P.; Vijayakrishnan, B.; Kang, G.-D.; von Bulow, C.; Howard, P.W.; Bones, J. Simultaneous monitoring of multiple attributes of pyrrolobenzodiazepine antibody-drug conjugates by size exclusion chromatography—High resolution mass spectrometry. J. Pharm. Biomed. Anal. 2021, 205, 114287. [Google Scholar] [CrossRef]
Index | Enzyme | Deamidation Site | Miscleavage | Sequence | Accurate Mass | Observed RT (min) | Observed Charge States |
---|---|---|---|---|---|---|---|
C01 | Chymotrypsin | N320 | 0 | NGKEY | 609.2759 | 2.83 | [M+H]+; [M+2H]2+ |
C02 | Chymotrypsin | N320 | 1 | NGKEYKCKVSNKAL | 1580.8345 | NA | NA |
C03 | Chymotrypsin | N320 | 1 | LNGKEY | 722.3600 | 4.36 | [M+H]+; [M+2H]2+ |
C04 | Chymotrypsin | D320 | 0 | DGKEY | 610.2599 | 4.03 | [M+H]+; [M+2H]2+ |
C05 | Chymotrypsin | D320 | 1 | DGKEYKCKVSNKAL | 1581.8185 | NA | NA |
C06 | Chymotrypsin | D320 | 1 | LDGKEY | 723.3440 | 4.49 | [M+H]+; [M+2H]2+ |
C07 | Chymotrypsin | N102 | 0 | CARGQGKNW | 1018.4767 | 4.18 | [M+2H]2+; [M+3H]3+ |
C08 | Chymotrypsin | N102 | 1 | CARGQGKNWHY | 1318.5990 | NA | NA |
C09 | Chymotrypsin | N102 | 1 | YCARGQGKNW | 1181.5401 | 4.46 | [M+3H]3+ |
C10 | Chymotrypsin | D102 | 0 | CARGQGKDW | 1019.4572 | 4.32 | [M+2H]2+; [M+3H]3+ |
C11 | Chymotrypsin | D102 | 1 | CARGQGKDWHY | 1319.5794 | NA | NA |
C12 | Chymotrypsin | D102 | 1 | YCARGQGKDW | 1182.5205 | NA | NA |
T01 | Trypsin | N320 | 0 | VVSVLTVLHQDWLNGK | 1806.9993 | 15.04 | [M+2H]2+; [M+3H]3+; [M+4H]4+ |
T02 | Trypsin | N320 | 1 | VVSVLTVLHQDWLNGKEYK | 2227.2001 | 13.99 | [M+3H]3+; [M+4H]4+ |
T03 | Trypsin | N320 | 1 | STSYNSTYRVVSVLTVLHQDWLNGK | 2866.4614 | NA | NA |
T04 | Trypsin | D320 | 0 | VVSVLTVLHQDWLDGK | 1807.9833 | 15.35 | [M+2H]2+; [M+3H]3+ |
T05 | Trypsin | D320 | 1 | VVSVLTVLHQDWLDGKEYK | 2228.1842 | 14.30 | [M+3H]3+; [M+4H]4+ |
T06 | Trypsin | D320 | 1 | STSYNSTYRVVSVLTVLHQDWLDGK | 2867.4454 | NA | NA |
T07 | Trypsin | N102 | 0 | NWHYDYFDYWGQGTLVTVSSASTK | 2824.2770 | 14.35 | [M+2H]2+; [M+3H]3+; [M+4H]4+ |
T08 | Trypsin | N102 | 1 | NWHYDYFDYWGQGTLVTVSSASTKGPSVFPLAPSSK | 3991.9058 | NA | NA |
T09 | Trypsin | N102 | 1 | GQGKNWHYDYFDYWGQGTLVTVSSASTK | 3194.4734 | NA | NA |
T10 | Trypsin | D102 | 0 | DWHYDYFDY WGQGTLVTVSSASTK | 2825.2610 | 15.29 | [M+2H]2+; [M+3H]3+; [M+4H]4+ |
T11 | Trypsin | D102 | 1 | DWHYDYFDYWGQGTLVTVSSASTKGPSVFPLAPSSK | 3992.8898 | NA | NA |
T12 | Trypsin | D102 | 1 | GQGKDWHYDYFDYWGQGTLVTVSSASTK | 3195.4574 | 13.80 | [M+3H]3+; [M+4H]4+ |
QC Levels | LLOQ | LQC | MQC | HQC | ULOQ | Dilutional QC (5 fold) |
---|---|---|---|---|---|---|
Nominal Concentration (ng/mL) | 50 | 125 | 625 | 3750 | 5000 | 2500 |
MEDI7247 ADC | Released PBD Payload | |||||
Average Recovery | 116.8 | 94.9 | 100.7 | 106.8 | 101.0 | 109.7 |
CV% | 18.1% | 8.4% | 9.9% | 6.4% | 8.9% | 5.1% |
Linear Regression | y = 2.79514e − 4x−0.00434 (weighting: 1/x); r = 0.99921 | |||||
Total Ab | Heavy-Chain CDR Unique Peptide: GLEWIGEIHHSGGANYNPSLK | |||||
Average Recovery | 120.0 | 88.5 | 109.6 | 109.4 | 112.2 | 117.3 |
CV% | 21.4% | 14.2% | 13.1% | 12.3% | 2.1% | 7.6% |
Linear Regression | y = 2.39471e − 4x + 0.00490 (weighting: 1/x); r = 0.99696 | |||||
Nnondeamidated Ab | Nondeamidated Peptide: NWHYDYFDYWGQGTLVTVSSASTK | |||||
Average Recovery | 111.2 | 109.2 | 100.3 | 107.6 | 102.1 | 115.8 |
CV% | 12.1% | 11.2% | 5.4% | 5.1% | 4.3% | 7.3% |
Linear Regression | y = 0.00103x − 0.02309 (weighting 1/x2); r = 0.99486 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yuan, J.; Mu, R.; Kubiak, R.J.; Ball, K.; Cao, M.; Hussmann, G.P.; de Mel, N.; Liu, D.; Roskos, L.K.; et al. Multiplex Bioanalytical Methods for Comprehensive Characterization and Quantification of the Unique Complementarity-Determining-Region Deamidation of MEDI7247, an Anti-ASCT2 Pyrrolobenzodiazepine Antibody–Drug Conjugate. Antibodies 2023, 12, 66. https://doi.org/10.3390/antib12040066
Huang Y, Yuan J, Mu R, Kubiak RJ, Ball K, Cao M, Hussmann GP, de Mel N, Liu D, Roskos LK, et al. Multiplex Bioanalytical Methods for Comprehensive Characterization and Quantification of the Unique Complementarity-Determining-Region Deamidation of MEDI7247, an Anti-ASCT2 Pyrrolobenzodiazepine Antibody–Drug Conjugate. Antibodies. 2023; 12(4):66. https://doi.org/10.3390/antib12040066
Chicago/Turabian StyleHuang, Yue, Jiaqi Yuan, Ruipeng Mu, Robert J. Kubiak, Kathryn Ball, Mingyan Cao, G. Patrick Hussmann, Niluka de Mel, Dengfeng Liu, Lorin K. Roskos, and et al. 2023. "Multiplex Bioanalytical Methods for Comprehensive Characterization and Quantification of the Unique Complementarity-Determining-Region Deamidation of MEDI7247, an Anti-ASCT2 Pyrrolobenzodiazepine Antibody–Drug Conjugate" Antibodies 12, no. 4: 66. https://doi.org/10.3390/antib12040066
APA StyleHuang, Y., Yuan, J., Mu, R., Kubiak, R. J., Ball, K., Cao, M., Hussmann, G. P., de Mel, N., Liu, D., Roskos, L. K., Liang, M., & Rosenbaum, A. I. (2023). Multiplex Bioanalytical Methods for Comprehensive Characterization and Quantification of the Unique Complementarity-Determining-Region Deamidation of MEDI7247, an Anti-ASCT2 Pyrrolobenzodiazepine Antibody–Drug Conjugate. Antibodies, 12(4), 66. https://doi.org/10.3390/antib12040066