Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants
Abstract
:1. Introduction
2. Modifications of Acidic and Basic Species
2.1. Modifications in Acidic Species
2.2. Modifications in Basic Species
3. Impact of Acidic and Basic Species on mAb Structure, Stability, and Biological Activity
4. In Vivo Modifications
4.1. Animal Model Studies
4.2. Human Studies
5. Control Strategies
5.1. Upstream Control
5.2. Down-Stream Control
5.3. Formulation and Storage
5.4. Phase-Appropriate Specification for Acidic and Basic Species
5.5. Critical Quality Attribute Assessment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADCC | Antibody-dependent cellular cytotoxicity |
Asn | Asparagine |
Asp | Aspartate |
BLA | Biologics license application |
CDC | Complement-dependent cytotoxicity |
CDR | Complementarity-determining region |
CHO | Chinese hamster ovary |
CEX | Cation exchange chromatography |
cIEF | Capillary isoelectric focusing |
CMC | Chemistry, manufacturing, and controls |
CQA | Critical quality attribute |
Cys | Cysteine |
DOE | Design of experiment |
Fab | Fragment antigen binding |
Gln | Glutamine |
Glu | Glutamate |
ICH | The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use |
IND | Investigational New Drug |
IEF | Isoelectric focusing |
IEX | Ion exchange chromatography |
LC-MS | Liquid chromatography-mass spectrometry |
Lys | Lysine |
Met | Methionine |
NGNA | N-Glycolylneuraminic acid |
PAM | Peptidyl glycine α-amidating monooxygenase |
PD | Pharmacodynamics |
PK | Pharmacokinetics |
PPQ | Process performance qualification |
PyroGlu | Pyroglutamate |
WCX | Weak cation exchange |
References
- Awdeh, Z.L.; Williamson, A.R.; Askonas, B.A. One cell-one immunoglobulin. Origin of limited heterogeneity of myeloma proteins. Biochem. J. 1970, 116, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo Reis Teixeira, A.; Erasmus, M.F.; D’Angelo, S.; Naranjo, L.; Ferrara, F.; Leal-Lopes, C.; Durrant, O.; Galmiche, C.; Morelli, A.; Scott-Tucker, A.; et al. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. mAbs 2021, 13, 1980942. [Google Scholar] [CrossRef] [PubMed]
- Wolf Perez, A.M.; Sormanni, P.; Andersen, J.S.; Sakhnini, L.I.; Rodriguez-Leon, I.; Bjelke, J.R.; Gajhede, A.J.; De Maria, L.; Otzen, D.E.; Vendruscolo, M.; et al. In vitro and in silico assess-ment of the developability of a designed monoclonal antibody library. mAbs 2019, 11, 388–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyon, A.; Excoffier, M.; Janin-Bussat, M.-C.; Bobaly, B.; Fekete, S.; Guillarme, D.; Beck, A. Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. J. Chromatogr. B 2017, 1065, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Wagner-Rousset, E.; Fekete, S.; Morel-Chevillet, L.; Colas, O.; Corvaïa, N.; Cianférani, S.; Guillarme, D.; Beck, A. Development of a fast workflow to screen the charge variants of therapeutic antibodies. J. Chromatogr. A 2017, 1498, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.; Pan, H.; Flynn, G.C. C-terminal lysine processing of human immunoglobulin G2 heavy chain in vivo. Biotechnol. Bioeng. 2010, 108, 404–412. [Google Scholar] [CrossRef]
- Beck, A.; Liu, H. Macro- and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies 2019, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boswell, C.A.; Tesar, D.B.; Mukhyala, K.; Theil, F.-P.; Fielder, P.J.; Khawli, L.A. Effects of Charge on Antibody Tissue Distribution and Pharmacokinetics. Bioconjugate Chem. 2010, 21, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Khawli, L.A.; Goswami, S.; Hutchinson, R.; Kwong, Z.W.; Yang, J.; Wang, X.; Yao, Z.; Sreedhara, A.; Cano, T.; Tesar, D.; et al. Charge variants in IgG1: Isolation, characteri-zation, in vitro binding properties and pharmacokinetics in rats. mAbs 2010, 2, 613–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.-Y.; Wang, N.; Liu, W.-H.; Tao, W.-J.; Liu, L.-L.; Shen, Z.-D. Charge Variants of an Avastin Biosimilar Isolation, Characterization, In Vitro Properties and Pharmacokinetics in Rat. PLoS ONE 2016, 11, e0151874. [Google Scholar] [CrossRef] [PubMed]
- Stracke, J.; Emrich, T.; Rueger, P.; Schlothauer, T.; Kling, L.; Knaupp, A.; Hertenberger, H.; Wolfert, A.; Spick, C.; Lau, W.; et al. A novel approach to investigate the effect of me-thionine oxidation on pharmacokinetic properties of therapeutic antibodies. mAbs 2014, 6, 1229–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Vlasak, J.; Li, Y.; Pristatsky, P.; Fang, Y.; Pittman, T.; Roman, J.; Wang, Y.; Prueksaritanont, T.; Ionescu, R. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol. Immunol. 2011, 48, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Perkins, M.; Theiler, R.; Lunte, S.; Jeschke, M. Determination of the origin of charge heterogeneity in a murine monoclonal antibody. Pharm. Res. 2000, 17, 1110–1117. [Google Scholar] [CrossRef]
- Ponniah, G.; Kita, A.; Nowak, C.; Neill, A.; Kori, Y.; Rajendran, S.; Liu, H. Characterization of the Acidic Species of a Monoclonal Antibody Using Weak Cation Exchange Chromatography and LC-MS. Anal. Chem. 2015, 87, 9084–9092. [Google Scholar] [CrossRef]
- King, C.; Patel, R.; Ponniah, G.; Nowak, C.; Neill, A.; Gu, Z.; Liu, H. Characterization of recombinant monoclonal antibody var-iants detected by hydrophobic interaction chromatography and imaged capillary isoelectric focusing electrophoresis. J. Chromatogr B Anal. Technol. Biomed. Life Sci. 2018, 1085, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Schmid, I.; Bonnington, L.; Gerl, M.; Bomans, K.; Thaller, A.L.; Wagner, K.; Schlothauer, T.; Falkenstein, R.; Zimmermann, B.; Kopitz, J.; et al. Assessment of susceptible chemical modifica-tion sites of trastuzumab and endogenous human immunoglobulins at physiological conditions. Commun. Biol. 2018, 1, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Lu, J.; Wroblewski, V.J.; Beals, J.M.; Riggin, R.M. In Vivo Deamidation Characterization of Monoclonal Antibody by LC/MS/MS. Anal. Chem. 2005, 77, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.C.; Tran, D.; Hilderbrand, A.; Andersen, N.; Huang, T.; Reif, K.; Hotzel, I.; Stefanich, E.G.; Liu, Y.; Wang, J. Automated Affinity Capture and On-Tip Digestion to Accurately Quantitate in vivo Deamidation of Therapeutic Antibodies. Anal. Chem. 2016, 88, 11521–11526. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.D.; van Enk, J.Z.; Flynn, G.C. Human antibody Fc deamidation in vivo. Biologicals 2009, 37, 313–322. [Google Scholar] [CrossRef]
- Goetze, A.M.; Liu, Y.D.; Arroll, T.; Chu, L.; Flynn, G.C. Rates and impact of human antibody glycation in vivo. Glycobiology 2011, 22, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Schenauer, M.R.; McCarter, J.D.; Flynn, G.C. IgG1 Thioether Bond Formation in Vivo. J. Biol. Chem. 2013, 288, 16371–16382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.D.; Goetze, A.M.; Bass, R.B.; Flynn, G.C. N-terminal Glutamate to Pyroglutamate Conversion in Vivo for Human IgG2 Antibodies. J. Biol. Chem. 2011, 286, 11211–11217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Nowak, C.; Patel, R. Modifications of recombinant monoclonal antibodies in vivo. Biologicals 2019, 59, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wypych, J.; Li, M.; Guo, A.; Zhang, Z.; Martinez, T.; Allen, M.J.; Fodor, S.; Kelner, D.N.; Flynn, G.C.; Liu, Y.D.; et al. Human IgG2 antibodies display disulfide-mediated struc-tural isoforms. J. Biol. Chem. 2008, 283, 16194–16205. [Google Scholar] [CrossRef] [Green Version]
- Dillon, T.M.; Ricci, M.S.; Vezina, C.; Flynn, G.C.; Liu, Y.D.; Rehder, D.S.; Plant, M.; Henkle, B.; Li, Y.; Deechongkit, S.; et al. Structural and functional characterization of disul-fide isoforms of the human IgG2 subclass. J. Biol. Chem. 2008, 283, 16206–16215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.J.; Kabakoff, B.; Macchi, F.D.; Shen, F.J.; Kwong, M.; Andya, J.D.; Shire, S.J.; Bjork, N.; Totpal, K.; Chen, A.B. Identification of multiple sources of charge het-erogeneity in a recombinant antibody. J. Chromatogr B Biomed. Sci. Appl. 2001, 752, 233–245. [Google Scholar] [CrossRef]
- Lyubarskaya, Y.; Houde, D.; Woodard, J.; Murphy, D.; Mhatre, R. Analysis of recombinant monoclonal antibody isoforms by electrospray ionization mass spectrometry as a strategy for streamlining characterization of recombinant monoclonal an-tibody charge heterogeneity. Anal. Biochem. 2006, 348, 24–39. [Google Scholar] [CrossRef]
- Vlasak, J.; Bussat, M.C.; Wang, S.; Wagner-Rousset, E.; Schaefer, M.; Klinguer-Hamour, C.; Kirchmeier, M.; Corvaia, N.; Ionescu, R.; Beck, A. Identification and characteriza-tion of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal. Biochem. 2009, 392, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Madren, S.; Feng, P.; Sosic, Z. Characterization of the acidic species of a monoclonal antibody using free flow elec-trophoresis fractionation and mass spectrometry. J. Pharm. Biomed. Anal. 2020, 185, 113217. [Google Scholar] [CrossRef]
- Tang, L.; Sundaram, S.; Zhang, J.; Carlson, P.; Matathia, A.; Parekh, B.; Zhou, Q.; Hsieh, M.-C. Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry. mAbs 2013, 5, 114–125. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Hu, J.; Pace, A.L.; Wong, R.; Wang, Y.J.; Kao, Y.-H. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping. J. Chromatogr. B 2014, 965, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Neill, A.; Nowak, C.; Patel, R.; Ponniah, G.; Gonzalez, N.; Miano, D.; Liu, H. Characterization of Recombinant Monoclonal An-tibody Charge Variants Using OFFGEL Fractionation, Weak Anion Exchange Chromatography, and Mass Spectrometry. Anal. Chem. 2015, 87, 6204–6211. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Xie, P.; Zou, M.; Fan, L.; Liu, X.; Zhou, Y.; Zhao, L.; Ding, D.; Wang, H.; Tan, W.-S. Identification of multiple sources of the acidic charge variants in an IgG1 monoclonal antibody. Appl. Microbiol. Biotechnol. 2017, 101, 5627–5638. [Google Scholar] [CrossRef] [PubMed]
- Ponniah, G.; Nowak, C.; Neill, A.; Liu, H. Characterization of charge variants of a monoclonal antibody using weak anion exchange chromatography at subunit levels. Anal. Biochem. 2017, 520, 49–57. [Google Scholar] [CrossRef]
- Zhang, W.; Czupryn, M.J. Analysis of isoaspartate in a recombinant monoclonal antibody and its charge isoforms. J. Pharm. Biomed. Anal. 2002, 30, 1479–1490. [Google Scholar] [CrossRef]
- Xiao, Z.; Yin, X.; Han, L.; Sun, B.; Shen, Z.; Liu, W.; Yu, F. A comprehensive approach for evaluating charge heterogeneity in biosimilars. Eur. J. Pharm. Sci. 2018, 115, 19–24. [Google Scholar] [CrossRef]
- Haberger, M.; Bomans, K.; Diepold, K.; Hook, M.; Gassner, J.; Schlothauer, T.; Zwick, A.; Spick, C.; Felix Kepert, J.; Hienz, B.; et al. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies: Susceptibility vs. functionality of critical quality attributes. mAbs 2014, 6, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ren, W.; Zong, L.; Zhang, J.; Wang, Y. Characterization of recombinant monoclonal antibody charge variants using WCX chromatography, icIEF and LC-MS/MS. Anal. Biochem. 2018, 564, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hosken, B.D.; Li, C.; Mullappally, B.; Co, C.; Zhang, B. Isolation and Characterization of Monoclonal Antibody Charge Vari-ants by Free Flow Isoelectric Focusing. Anal. Chem. 2016, 88, 5662–5669. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, D.; Malani, H.; Rathore, A.S. LC–MS based case-by-case analysis of the impact of acidic and basic charge variants of bevacizumab on stability and biological activity. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Leblanc, Y.; Ramon, C.; Bihoreau, N.; Chevreux, G. Charge variants characterization of a monoclonal antibody by ion ex-change chromatography coupled on-line to native mass spectrometry: Case study after a long-term storage at +5 degrees C. J. Chromatogr. B Anal. Technol. Biomed Life Sci. 2017, 1048, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Camperi, J.; Grunert, I.; Heinrich, K.; Winter, M.; Ozipek, S.; Hoelterhoff, S.; Weindl, T.; Mayr, K.; Bulau, P.; Meier, M.; et al. Inter-laboratory study to evaluate the per-formance of automated online characterization of antibody charge variants by multi-dimensional LC-MS/MS. Talanta 2021, 234, 122628. [Google Scholar] [CrossRef] [PubMed]
- Santora, L.C.; Krull, I.S.; Grant, K. Characterization of recombinant human monoclonal tissue necrosis factor-alpha anti-body using cation-exchange HPLC and capillary isoelectric focusing. Anal. Biochem. 1999, 275, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Steen, S.; Hambly, D.; Valliere-Douglass, J.; Bos, T.V.; Smallwood, S.; Yates, Z.; Arroll, T.; Han, Y.; Gadgil, H.; et al. Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain. J. Pharm. Sci. 2009, 98, 3509–3521. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Raoufi, F.; Bailly, M.A.; Fayadat-Dilman, L.; Tomazela, D. Hyphenation of strong cation exchange chromatography to native mass spectrometry for high throughput online characterization of charge heterogeneity of therapeutic monoclonal antibodies. mAbs 2020, 12, 1763762. [Google Scholar] [CrossRef]
- Hintersteiner, B.; Lingg, N.; Zhang, P.; Woen, S.; Hoi, K.M.; Stranner, S.; Wiederkum, S.; Mutschlechner, O.; Schuster, M.; Loibner, H.; et al. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors. mAbs 2016, 8, 1548–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, C.; Alcala, E.; Petkovska, I.; Matthews, D.; Canova-Davis, E.; Taticek, R.; Ma, S. A study in glycation of a therapeutic re-combinant humanized monoclonal antibody: Where it is, how it got there, and how it affects charge-based behavior. Anal. Biochem. 2008, 373, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.K.; Hambly, D.M.; Kerwin, B.A.; Treuheit, M.J.; Gadgil, H.S. Characterization of Site-Specific Glycation During Process Development of a Human Therapeutic Monoclonal Antibody. J. Pharm. Sci. 2011, 100, 2543–2550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, J.; Hewitt, D.; Tran, B.; Gao, X.; Qiu, Z.J.; Tejada, M.; Gazzano-Santoro, H.; Kao, Y.-H. Identification and characterization of buried unpaired cyste-ines in a recombinant monoclonal IgG1 antibody. Anal. Chem. 2012, 84, 7112–7123. [Google Scholar] [CrossRef] [PubMed]
- Pristatsky, P.; Cohen, S.L.; Krantz, D.; Acevedo, J.; Ionescu, R.; Vlasak, J. Evidence for Trisulfide Bonds in a Recombinant Variant of a Human IgG2 Monoclonal Antibody. Anal. Chem. 2009, 81, 6148–6155. [Google Scholar] [CrossRef]
- Santora, L.C.; Stanley, K.; Krull, I.S.; Grant, K. Characterization of maleuric acid derivatives on transgenic human monoclo-nal antibody due to post-secretional modifications in goat milk. Biomed Chromatogr. 2006, 20, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Saunders, J.; Schussler, S.D.; Rios, S.; Insaidoo, F.K.; Fridman, A.L.; Li, H.; Liu, Y.-H. Characterization of a novel modification of a CHO-produced mAb: Evidence for the presence of tyrosine sulfation. mAbs 2017, 9, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Chumsae, C.; Zhou, L.L.; Shen, Y.; Wohlgemuth, J.; Fung, E.; Burton, R.; Radziejewski, C.; Zhou, Z.S. Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody. Anal. Chem. 2014, 86, 8932–8936. [Google Scholar] [CrossRef] [Green Version]
- Chumsae, C.; Hossler, P.; Raharimampionona, H.; Zhou, Y.; McDermott, S.; Racicot, C.; Radziejewski, C.; Zhou, Z.S. When Good Intentions Go Awry: Modification of a Recombinant Monoclonal Antibody in Chemically Defined Cell Culture by Xylosone, an Oxidative Product of Ascorbic Acid. Anal. Chem. 2015, 87, 7529–7534. [Google Scholar] [CrossRef] [PubMed]
- Chumsae, C.; Gifford, K.; Lian, W.; Liu, H.; Radziejewski, C.H.; Zhou, Z.S. Arginine Modifications by Methylglyoxal: Discovery in a Recombinant Monoclonal Antibody and Contribution to Acidic Species. Anal. Chem. 2013, 85, 11401–11409. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Walsh, A.; Ehrick, R.; Xu, W.; May, K.; Liu, H. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. mAbs 2012, 4, 578–585. [Google Scholar] [CrossRef]
- Chu, G.C.; Chelius, D.; Xiao, G.; Khor, H.K.; Coulibaly, S.; Bondarenko, P.V. Accumulation of Succinimide in a Recombinant Monoclonal Antibody in Mildly Acidic Buffers Under Elevated Temperatures. Pharm. Res. 2007, 24, 1145–1156. [Google Scholar] [CrossRef]
- Valliere-Douglass, J.; Jones, L.; Shpektor, D.; Kodama, P.; Wallace, A.; Balland, A.; Bailey, R.; Zhang, Y. Separation and Characterization of an IgG2 Antibody Containing a Cyclic Imide in CDR1 of Light Chain by Hydrophobic Interaction Chromatography and Mass Spectrometry. Anal. Chem. 2008, 80, 3168–3174. [Google Scholar] [CrossRef] [PubMed]
- Sreedhara, A.; Cordoba, A.; Zhu, Q.; Kwong, J.; Liu, J. Characterization of the Isomerization Products of Aspartate Residues at Two Different Sites in a Monoclonal Antibody. Pharm. Res. 2011, 29, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Teshima, G.; Li, M.X.; Danishmand, R.; Obi, C.; To, R.; Huang, C. Kung, J.; Lahidji, V.; Freeberg, J.; Thorner, L.; et al. Separation of oxidized variants of a monoclonal anti-body by anion-exchange. J. Chromatogr. A. 2011, 1218, 2091–2097. [Google Scholar] [CrossRef]
- Chumsae, C.; Gaza-Bulseco, G.; Sun, J.; Liu, H. Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. J. Chromatogr. B 2007, 850, 285–294. [Google Scholar] [CrossRef]
- Ouellette, D.; Alessandri, L.; Chin, A.; Grinnell, C.; Tarcsa, E.; Radziejewski, C.; Correia, I. Studies in serum support rapid formation of disulfide bond between unpaired cysteine residues in the VH domain of an immunoglobulin G1 molecule. Anal. Biochem. 2010, 397, 37–47. [Google Scholar] [CrossRef]
- Beck, A.; Bussat, M.C.; Zorn, N.; Robillard, V.; Klinguer-Hamour, C.; Chenu, S.; Goetsch, L.; Corvaia, N.; Van Dorsselaer, A.; Haeuw, J.-F. Characterization by liquid chromatog-raphy combined with mass spectrometry of monoclonal anti-IGF-1 receptor antibodies produced in CHO and NS0 cells. J. Chromatogr. B Anal. Technol. Biomed Life Sci. 2005, 819, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Meert, C.D.; Brady, L.J.; Guo, A.; Balland, A. Characterization of Antibody Charge Heterogeneity Resolved by Preparative Immobilized pH Gradients. Anal. Chem. 2010, 82, 3510–3518. [Google Scholar] [CrossRef] [PubMed]
- Moorhouse, K.; Nashabeh, W.; Deveney, J.; Bjork, N.; Mulkerrin, M.; Ryskamp, T. Validation of an HPLC method for the analysis of the charge heterogeneity of the recombinant monoclonal antibody IDEC-C2B8 after papain digestion. J. Pharm. Biomed. Anal. 1997, 16, 593–603. [Google Scholar] [CrossRef]
- Antes, B.; Amon, S.; Rizzi, A.; Wiederkum, S.; Kainer, M.; Szolar, O.; Fido, M.; Kircheis, R.; Nechansky, A. Analysis of lysine clipping of a humanized Lewis-Y specific IgG antibody and its relation to Fc-mediated effector function. J. Chromatogr. B 2007, 852, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Yu, C.; Yadav, D.B.; Hu, Z.; Amurao, A.; Duenas, E.; Wong, M.; Iverson, M.; Zheng, K.; Lam, X.; et al. Evaluation of Heavy-Chain C-Terminal Deletion on Product Quality and Pharmacokinetics of Monoclonal Antibodies. J. Pharm. Sci. 2016, 105, 2066–2072. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Paisley-Flango, K.; Tangarone, B.S.; Porter, T.J.; Rouse, J.C. Cation exchange-HPLC and mass spectrometry re-veal C-terminal amidation of an IgG1 heavy chain. Anal. Biochem. 2007, 360, 75–83. [Google Scholar] [CrossRef]
- Kaschak, T.; Boyd, D.; Lu, F.; Derfus, G.; Kluck, B.; Nogal, B.; Emery, C.; Summers, C.; Zheng, K.; Bayer, R.; et al. Characterization of the basic charge variants of a human IgG1: Effect of copper concentration in cell culture media. mAbs 2011, 3, 577–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, D.; Zhang, J.; Pritchett, R.; Liu, H.; Kyauk, J.; Luo, J.; Amanullah, A. Detection and identification of a serine to arginine sequence variant in a therapeutic monoclonal antibody. J. Chromatogr. B 2011, 879, 2877–2884. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Nagpal, R.; Ghosh, A.K.; Gadamshetty, D.; Nagapattinam, S.; Subbarao, M.; Rakshit, S.; Padiyar, S.; Sreenivas, S.; Govindappa, N.; et al. Identification, characterization and control of a sequence variant in monoclonal antibody drug product: A case study. Sci. Rep. 2021, 11, 13233. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, M.; Park, S.J.; Balakrishnan, G.; Zhou, K.; Pan, D.; Das, T.K. Bridging size and charge variants of a therapeutic mon-oclonal antibody by two-dimensional liquid chromatography. J. Pharm. Biomed Anal. 2020, 183, 113178. [Google Scholar] [CrossRef]
- Phillips, J.J.; Buchanan, A.; Andrews, J.; Chodorge, M.; Sridharan, S.; Mitchell, L.; Burmeister, N.; Kippen, A.D.; Vaughan, T.J.; Higazi, D.R.; et al. Rate of Asparagine Deamidation in a Monoclonal Antibody Correlating with Hydrogen Exchange Rate at Adjacent Downstream Residues. Anal. Chem. 2017, 89, 2361–2368. [Google Scholar] [CrossRef]
- Bults, P.; Bischoff, R.; Bakker, H.; Gietema, J.A.; van de Merbel, N.C. LC-MS/MS-Based Monitoring of In Vivo Protein Bio-transformation: Quantitative Determination of Trastuzumab and Its Deamidation Products in Human Plasma. Anal. Chem. 2016, 88, 1871–1877. [Google Scholar] [CrossRef] [PubMed]
- Chelius, D.; Rehder, D.S.; Bondarenko, P.V. Identification and characterization of deamidation sites in the conserved re-gions of human immunoglobulin gamma antibodies. Anal. Chem. 2005, 77, 6004–6011. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Zhang, L.; Duan, S.; Williams, T.D.; Vlasak, J.; Ionescu, R.; Topp, E.M. Effect of protein structure on deamidation rate in the Fc fragment of an IgG1 monoclonal antibody. Protein Sci. 2009, 18, 1573–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaza-Bulseco, G.; Li, B.; Bulseco, A.; Liu, H. Method to Differentiate Asn Deamidation That Occurred Prior to and during Sample Preparation of a Monoclonal Antibody. Anal. Chem. 2008, 80, 9491–9498. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gaza-Bulseco, G.; Sun, J. Characterization of the stability of a fully human monoclonal IgG after prolonged incu-bation at elevated temperature. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 837, 35–43. [Google Scholar] [CrossRef]
- Harris, R.J. Heterogeneity of recombinant antibodies: Linking structure to function. Dev. Biol. 2005, 122, 117–127. [Google Scholar]
- Zhang, A.; Hu, P.; MacGregor, P.; Xue, Y.; Fan, H.; Suchecki, P.; Olszewski, L.; Liu, A. Understanding the conformational impact of chemical modifications on monoclonal antibodies with diverse sequence variation using hydrogen/deuterium exchange mass spec-trometry and structural modeling. Anal. Chem. 2014, 86, 3468–3475. [Google Scholar] [CrossRef]
- Alam, M.E.; Slaney, T.R.; Wu, L.; Das, T.K.; Kar, S.; Barnett, G.V.; Leone, A.; Tessier, P.M. Unique Impacts of Methionine Oxidation, Tryptophan Oxidation, and Asparagine Deamidation on Antibody Stability and Aggregation. J. Pharm. Sci. 2019, 109, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Morrison, S.L. Effect of C2-associated carbohydrate structure on Ig effector function: Studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J. Immunol. 1998, 160, 55. [Google Scholar]
- Falck, D.; Jansen, B.C.; Plomp, R.; Reusch, D.; Haberger, M.; Wuhrer, M. Glycoforms of Immunoglobulin G Based Biopharma-ceuticals Are Differentially Cleaved by Trypsin Due to the Glycoform Influence on Higher-Order Structure. J. Proteome Res. 2015, 14, 4019–4028. [Google Scholar] [CrossRef]
- Naso, M.F.; Tam, S.H.; Scallon, B.J.; Raju, T.S. Engineering host cell lines to reduce terminal sialylation of secreted antibodies. mAbs 2010, 2, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Boyd, P.; Lines, A.; Patel, A. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. 1995, 32, 1311–1318. [Google Scholar] [CrossRef]
- Scallon, B.J.; Tam, S.H.; McCarthy, S.G.; Cai, A.N.; Raju, T.S. Higher levels of sialylated Fc glycans in immunoglobulin G mole-cules can adversely impact functionality. Mol. Immunol. 2007, 44, 1524–1534. [Google Scholar] [CrossRef]
- Banks, D.D.; Hambly, D.M.; Scavezze, J.L.; Siska, C.C.; Stackhouse, N.L.; Gadgil, H.S. The effect of sucrose hydrolysis on the sta-bility of protein therapeutics during accelerated formulation studies. J. Pharm. Sci. 2009, 98, 4501–4510. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.M.; Skillbn, A.W.; Self, C.H. Glycation of monoclonal antibodies impairs their ability to bind antigen. Clin. Exp. Immunol. 1994, 98, 245–251. [Google Scholar] [CrossRef]
- Butko, M.; Pallat, H.; Cordoba, A.; Yu, X.C. Recombinant Antibody Color Resulting from Advanced Glycation End Product Modifications. Anal. Chem. 2014, 86, 9816–9823. [Google Scholar] [CrossRef]
- Yan, Y.; Wei, H.; Fu, Y.; Jusuf, S.; Zeng, M.; Ludwig, R.; Krystek, S.R.; Chen, G.; Tao, L.; Das, T.K. Isomerization and Oxidation in the Complementari-ty-Determining Regions of a Monoclonal Antibody: A Study of the Modification-Structure-Function Correlations by Hy-drogen-Deuterium Exchange Mass Spectrometry. Anal. Chem. 2016, 88, 2041–2050. [Google Scholar] [CrossRef]
- Cacia, J.; Keck, R.; Presta, L.G.; Frenz, J. Isomerization of an aspartic acid residue in the complementarity-determining re-gions of a recombinant antibody to human IgE: Identification and effect on binding affinity. Biochemistry 1996, 35, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Rehder, D.S.; Chelius, D.; McAuley, A.; Dillon, T.M.; Xiao, G.; Crouse-Zeineddini, J.; Vardanyan, L.; Perico, N.; Mukku, V.; Brems, D.N.; et al. Isomerization of a single aspartyl residue of anti-epidermal growth factor receptor immunoglobulin gamma2 antibody highlights the role avidity plays in antibody activity. Biochemistry 2008, 47, 2518–2530. [Google Scholar] [CrossRef] [PubMed]
- Ouellette, D.; Chumsae, C.; Clabbers, A.; Radziejewski, C.; Correia, I. Comparison of the in vitro and in vivo stability of a succinimide intermediate observed on a therapeutic IgG1 molecule. mAbs 2013, 5, 432–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Buren, N.; Rehder, D.; Gadgil, H.; Matsumura, M.; Jacob, J. Elucidation of two major aggregation pathways in an IgG2 antibody. J. Pharm. Sci. 2009, 98, 3013–3030. [Google Scholar] [CrossRef] [PubMed]
- Brych, S.R.; Gokarn, Y.R.; Hultgen, H.; Stevenson, R.J.; Rajan, R.; Matsumura, M. Characterization of antibody aggregation: Role of buried, unpaired cysteines in particle formation. J. Pharm. Sci. 2010, 99, 764–781. [Google Scholar] [CrossRef]
- Huh, J.H.; White, A.J.; Brych, S.R.; Franey, H.; Matsumura, M. The identification of free cysteine residues within antibodies and a potential role for free cysteine residues in covalent aggregation because of agitation stress. J. Pharm. Sci. 2013, 102, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Wen, D.; Weinreb, P.; Sun, Y.; Zhang, L.; Foley, S.F.; Kshirsagar, R.; Evans, D.; Mi, S.; Meier, W.; et al. Characterization of trisulfide modification in antibodies. Anal. Biochem. 2010, 400, 89–98. [Google Scholar] [CrossRef]
- McSherry, T.; McSherry, J.; Ozaeta, P.; Longenecker, K.; Ramsay, C.; Fishpaugh, J.; Allen, S. Cysteinylation of a monoclonal anti-body leads to its inactivation. mAbs 2016, 8, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Mo, J.; Yan, Q.; So, C.K.; Soden, T.; Lewis, M.J.; Hu, P. Understanding the Impact of Methionine Oxidation on the Biological Functions of IgG1 Antibodies Using Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2016, 88, 9495–9502. [Google Scholar] [CrossRef]
- Wei, Z.; Feng, J.; Lin, H.-Y.; Mullapudi, S.; Bishop, E.; Tous, G.I.; Casas-Finet, J.; Hakki, F.; Strouse, A.R.; Schenerman, M.A. Identification of a Single Tryptophan Residue as Critical for Binding Activity in a Humanized Monoclonal Antibody against Respiratory Syncytial Virus. Anal. Chem. 2007, 79, 2797–2805. [Google Scholar] [CrossRef]
- Liu, D.; Ren, D.; Huang, H.; Dankberg, J.; Rosenfeld, R.; Cocco, M.J.; Li, L.; Brems, D.N.; Remmele, J.R.L. Structure and Stability Changes of Human IgG1 Fc as a Consequence of Methionine Oxidation. Biochemistry 2008, 47, 5088–5100. [Google Scholar] [CrossRef] [PubMed]
- Burkitt, W.; Domann, P.; O’Connor, G. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci. 2010, 19, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Chen, K.; Chu, L.; Kinderman, F.; Apostol, I.; Huang, G. Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci. 2009, 18, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Bertolotti-Ciarlet, A.; Wang, W.; Lownes, R.; Pristatsky, P.; Fang, Y.; McKelvey, T.; Li, Y.; Li, Y.; Drummond, J.; Prueksaritanont, T.; et al. Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors. Mol. Immunol. 2009, 46, 1878–1882. [Google Scholar] [CrossRef] [PubMed]
- Loew, C.; Knoblich, C.; Fichtl, J.; Alt, N.; Diepold, K.; Bulau, P.; Goldbach, P.; Adler, M.; Mahler, H.-C.; Grauschopf, U. Analytical Protein A Chromatography as a Quantitative Tool for the Screening of Methionine Oxidation in Monoclonal Antibodies. J. Pharm. Sci. 2012, 101, 4248–4257. [Google Scholar] [CrossRef]
- Shaw, S.-Y.; Margolies, M.N. A spontaneous variant of an antidigoxin hybridoma antibody with increased affinity arises from a heavy chain signal peptide mutation. Mol. Immunol. 1992, 29, 525–529. [Google Scholar] [CrossRef]
- van den Bremer, E.T.; Beurskens, F.J.; Voorhorst, M.; Engelberts, P.J.; de Jong, R.N.; van der Boom, B.G.; Cook, E.M.; Lindorfer, M.A.; Taylor, R.P.; van Berkel, P.H. Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation. mAbs 2015, 7, 672–680. [Google Scholar] [CrossRef] [Green Version]
- Tsai, P.K.; Bruner, M.W.; Irwin, J.I.; Ip, C.C.; Oliver, C.N.; Nelson, R.W.; Volkin, D.B.; Middaugh, C.R. Origin of the isoelectric heterogeneity of mono-clonal immunoglobulin h1B4. Pharm. Res. 1993, 10, 1580–1586. [Google Scholar] [CrossRef]
- Yeung, Y.A.; Leabman, M.K.; Marvin, J.S.; Qiu, J.; Adams, C.W.; Lien, S.; Starovasnik, M.A.; Lowman, H.B. Engineering human IgG1 affinity to human neo-natal Fc receptor: Impact of affinity improvement on pharmacokinetics in primates. J. Immunol. 2009, 182, 7663–7671. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.; Bondarenko, P.V.; Jacob, J.; Chu, G.C.; Chelius, D. 18O labeling method for identification and quantification of suc-cinimide in proteins. Anal Chem. 2007, 79, 2714–2721. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Skillen, A.W.; Self, C.H. Glycation increases the vascular clearance rate of IgG in mice. Clin. Exp. Immunol. 2008, 94, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, D.; E Taylor, R.; Padler-Karavani, V.; Diaz, S.; Varki, A. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat. Biotechnol. 2010, 28, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Igawa, T.; Tsunoda, H.; Tachibana, T.; Maeda, A.; Mimoto, F.; Moriyama, C.; Nanami, M.; Sekimori, Y.; Nabuchi, Y.; Aso, Y.; et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng. Des. Sel. 2010, 23, 385–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.D.; Chen, X.; Enk, J.Z.-V.; Plant, M.; Dillon, T.M.; Flynn, G.C. Human IgG2 Antibody Disulfide Rearrangement in Vivo. J. Biol. Chem. 2008, 283, 29266–29272. [Google Scholar] [CrossRef] [Green Version]
- Tsubaki, M.; Terashima, I.; Kamata, K.; Koga, A. C-terminal modification of monoclonal antibody drugs: Amidated species as a general product-related substance. Int. J. Biol. Macromol. 2013, 52, 139–147. [Google Scholar] [CrossRef]
- Kalia, K.; Sharma, S.; Mistry, K. Non-enzymatic glycosylation of immunoglobulins in diabetic nephropathy. Clin. Chim. Acta 2004, 347, 169–176. [Google Scholar] [CrossRef]
- Parekh, R.B.; Dwek, R.A.; Sutton, B.J.; Fernandes, D.L.; Leung, A.; Stanworth, D.; Rademacher, T.W.; Mizuochi, T.; Taniguchi, T.; Matsuta, K.; et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 1985, 316, 452–457. [Google Scholar] [CrossRef]
- Rudd, P.M.; Leatherbarrow, R.J.; Rademacher, T.W.; Dwek, R.A. Diversification of the IgG molecule by oligosaccharides. Mol. Immunol. 1991, 28, 1369–1378. [Google Scholar] [CrossRef]
- Flynn, G.C.; Chen, X.; Liu, Y.D.; Shah, B.; Zhang, Z. Naturally occurring glycan forms of human immunoglobulins G1 and G2. Mol. Immunol. 2010, 47, 2074–2082. [Google Scholar] [CrossRef]
- Gevondyan, N.M.; Volynskaia, A.M.; Gevondyan, V.S. Four free cysteine residues found in human IgG1 of healthy donors. Biochem 2006, 71, 279–284. [Google Scholar] [CrossRef]
- Mastrangeli, R.; Audino, M.C.; Palinsky, W.; Broly, H.; Bierau, H. Current views on N-glycolylneuraminic acid in therapeu-tic recombinant proteins. Trends Pharm. Sci. 2021, 42, 943–956. [Google Scholar] [CrossRef]
- Bailly, M.; Mieczkowski, C.; Juan, V.; Metwally, E.; Tomazela, D.; Baker, J.; Uchida, M.; Kofman, E.; Raoufi, F.; Motlagh, S.; et al. Predicting Antibody Developability Profiles Through Early Stage Discovery Screening. mAbs 2020, 12, 1743053. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Caffry, I.; Wu, J.; Geng, S.B.; Jain, T.; Sun, T.; Reid, F.; Cao, Y.; Estep, P.; Yu, Y.; et al. High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. mAbs 2013, 6, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, D.; Mason, B.; Rossomando, T.; Li, N.; Liu, D.; Cheung, J.K.; Xu, W.; Raghava, S.; Katiyar, A.; et al. Structure, heterogeneity and developability assessment of therapeutic antibodies. mAbs 2018, 11, 239–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farsang, E.; Guillarme, D.; Veuthey, J.L.; Beck, A.; Lauber, M.; Schmudlach, A.; Fekete , S. Coupling non-denaturing chromatog-raphy to mass spectrometry for the characterization of monoclonal antibodies and related products. J. Pharm. Biomed Anal. 2020, 185, 113207. [Google Scholar] [CrossRef]
- Murisier, A.; Duivelshof, B.L.; Fekete, S.; Bourquin, J.; Schmudlach, A.; Lauber, M.A.; Nguyen, J.M.; Beck, A.; Guillarme, D.; D’Atri, V. Towards a simple on-line coupling of ion exchange chromatography and native mass spectrometry for the detailed characterization of monoclonal antibodies. J. Chromatogr. A 2021, 1655, 462499. [Google Scholar] [CrossRef]
- Maeda, E.; Kita, S.; Kinoshita, M.; Urakami, K.; Hayakawa, T.; Kakehi, K. Analysis of nonhuman N-glycans as the minor con-stituents in recombinant monoclonal antibody pharmaceuticals. Anal. Chem. 2012, 84, 2373–2379. [Google Scholar] [CrossRef]
- Liu, L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal anti-bodies and Fc-fusion proteins. J. Pharm. Sci. 2015, 104, 1866–1884. [Google Scholar] [CrossRef]
- Chung, C.H.; Mirakhur, B.; Chan, E.; Le, Q.-T.; Berlin, J.; Morse, M.; Murphy, B.A.; Satinover, S.M.; Hosen, J.; Mauro, D.; et al. Cetuximab-Induced Anaphylaxis and IgE Specific for Galactose-α-1,3-Galactose. New Engl. J. Med. 2008, 358, 1109–1117. [Google Scholar] [CrossRef] [Green Version]
- Rouiller, Y.; Perilleux, A.; Vesin, M.N.; Stettler, M.; Jordan, M.; Broly, H. Modulation of mAb quality attributes using micro-liter scale fed-batch cultures. Biotechnol. Prog. 2014, 30, 571–583. [Google Scholar] [CrossRef]
- Dick, L.W., Jr.; Qiu, D.; Mahon, D.; Adamo, M.; Cheng, K.C. C-terminal lysine variants in fully human monoclonal antibod-ies: Investigation of test methods and possible causes. Biotechnol. Bioeng. 2008, 100, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.; Reed-Bogan, A.; Harmon, B.J. Glycosylation profiling of a therapeutic recombinant monoclonal antibody with two N-linked glycosylation sites using liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spec-trometer. Anal. Biochem. 2008, 375, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Škulj, M.; Pezdirec, D.; Gaser, D.; Kreft, M.; Zorec, R. Reduction in C-terminal amidated species of recombinant monoclonal antibodies by genetic modification of CHO cells. BMC Biotechnol. 2014, 14, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Zhang, H.; Haley, B.; Macchi, F.; Yang, F.; Misaghi, S.; Elich, J.; Yang, R.; Tang, Y.; Joly, J.C.; et al. Carboxypeptidase D is the only enzyme responsible for antibody C-terminal lysine cleavage in Chinese hamster ovary (CHO) cells. Biotechnol. Bioeng. 2016, 113, 2100–2106. [Google Scholar] [CrossRef]
- Jones, M.; Palackal, N.; Wang, F.; Gaza-Bulseco, G.; Hurkmans, K.; Zhao, Y.; Chitikila, C.; Clavier, S.; Liu, S.; Menesale, E.; et al. “High-risk” host cell proteins (HCPs): A multi-company collaborative view. Biotechnol. Bioeng. 2021, 118, 2870–2885. [Google Scholar] [CrossRef]
- Hossler, P.; Wang, M.; McDermott, S.; Racicot, C.; Chemfe, K.; Zhang, Y.; Chumsae, C.; Manuilov, A. Cell culture media supplementation of bio-flavonoids for the targeted reduction of acidic species charge variants on recombinant therapeutic proteins. Biotechnol. Prog. 2015, 31, 1039–1052. [Google Scholar] [CrossRef]
- Chung, S.; Tian, J.; Tan, Z.; Chen, J.; Zhang, N.; Huang, Y.; Vandermark, E.; Lee, J.; Borys, M.; Li, Z.J. Modulating cell culture oxidative stress reduces protein gly-cation and acidic charge variant formation. mAbs 2019, 11, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Niu, H.; Chen, X.; Zhang, X.; Miao, S.; Deng, X.; Liu, X.; Tan, W.-S.; Zhou, Y.; Fan, L. Elucidating the effects of pH shift on IgG1 monoclonal antibody acidic charge variant levels in Chinese hamster ovary cell cultures. Appl. Microbiol. Biotechnol. 2016, 100, 10343–10353. [Google Scholar] [CrossRef]
- Kishishita, S.; Nishikawa, T.; Shinoda, Y.; Nagashima, H.; Okamoto, H.; Takuma, S.; Aoyagi, H. Effect of temperature shift on levels of acidic charge variants in IgG monoclonal antibodies in Chinese hamster ovary cell culture. J. Biosci. Bioeng. 2014, 119, 700–705. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.T.; Tang, H.; Fan, L.; Hu, D.; Liu, J.; Liu, X.; Tan, W.-S. Culture temperature modulates monoclonal antibody charge varia-tion distribution in Chinese hamster ovary cell cultures. Biotechnol. Lett. 2015, 37, 2151–2157. [Google Scholar] [CrossRef]
- Zheng, C.; Zhuang, C.; Qin, J.; Chen, Y.; Fu, Q.; Qian, H.; Wu, T.; Wang, Y.; Wu, X.; Qi, N. Combination of temperature shift and hydrolysate addition regulates anti-IgE monoclonal antibody charge heterogeneity in Chinese hamster ovary cell fed-batch culture. Cytotechnology 2018, 70, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Abu-Absi, S.F.; Yang, L.; Thompson, P.; Jiang, C.; Kandula, S.; Schilling, B.; Shukla, A.A. Defining process design space for monoclonal antibody cell culture. Biotechnol. Bioeng. 2010, 106, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Mallaney, M.; Wang, S.-H.; Sreedhara, A. Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors. Biotechnol. Prog. 2014, 30, 562–570. [Google Scholar] [CrossRef]
- Dick, L.W., Jr.; Kim, C.; Qiu, D.; Cheng, K.-C. Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides. Biotechnol. Bioeng. 2007, 97, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, J.; Ren, D.; Tsai, W.-L.; Li, F.; Amanullah, A.; Hudson, T. Probing of C-terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media. Biotechnol. Bioeng. 2012, 109, 2306–2315. [Google Scholar] [CrossRef]
- Sissolak, B.; Lingg, N.; Sommeregger, W.; Striedner, G.; Vorauer-Uhl, K. Impact of mammalian cell culture conditions on monoclonal antibody charge heterogeneity: An accessory monitoring tool for process development. J. Ind. Microbiol. Biotechnol. 2019, 46, 1167–1178. [Google Scholar] [CrossRef] [Green Version]
- Ivarsson, M.; Villiger, T.K.; Morbidelli, M.; Soos, M. Evaluating the impact of cell culture process parameters on monoclo-nal antibody N-glycosylation. J. Biotechnol. 2014, 188, 88–96. [Google Scholar] [CrossRef]
- Aghamohseni, H.; Ohadi, K.; Spearman, M.; Krahn, N.; Moo-Young, M.; Scharer, J.M.; Butler, M.; Budman, H.M. Effects of nutrient levels and av-erage culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody. J. Biotechnol. 2014, 186, 98–109. [Google Scholar] [CrossRef]
- Horvath, B.; Mun, M.; Laird, M.W. Characterization of a Monoclonal Antibody Cell Culture Production Process Using a Quality by Design Approach. Mol. Biotechnol. 2010, 45, 203–206. [Google Scholar] [CrossRef]
- Yuk, I.H.; Zhang, B.; Yang, Y.; Dutina, G.; Leach, K.D.; Vijayasankaran, N.; Shen, A.Y.; Andersen, D.C.; Snedecor, B.R.; Joly, J.C. Controlling glycation of recombinant anti-body in fed-batch cell cultures. Biotechnol. Bioeng. 2011, 108, 2600–2610. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, Y.; Yuk, I.; Pai, R.; McKay, P.; Eigenbrot, C.; Dennis, M.; Katta, V.; Francissen, K.C. Unveiling a glycation hot spot in a recombinant human-ized monoclonal antibody. Anal. Chem. 2008, 80, 2379–2390. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, R.; McElearney, K.; Gilbert, A.; Sinacore, M.; Ryll, T. Controlling trisulfide modification in recombinant mono-clonal antibody produced in fed-batch cell culture. Biotechnol. Bioeng. 2012, 109, 2523–2532. [Google Scholar] [CrossRef]
- Yuk, I.H.; Russell, S.; Tang, Y.; Hsu, W.-T.; Mauger, J.B.; Aulakh, R.P.S.; Luo, J.; Gawlitzek, M.; Joly, J.C. Effects of copper on CHO cells: Cellular requirements and product quality considerations. Biotechnol. Prog. 2014, 31, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Chaderjian, W.B.; Chin, E.T.; Harris, R.J.; Etcheverry, T.M. Effect of Copper Sulfate on Performance of a Serum-Free CHO Cell Culture Process and the Level of Free Thiol in the Recombinant Antibody Expressed. Biotechnol. Prog. 2008, 21, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Gramer, M.J.; Eckblad, J.J.; Donahue, R.; Brown, J.; Shultz, C.; Vickerman, K.; Priem, P.; Bremer, E.T.V.D.; Gerritsen, J.; van Berkel, P.H. Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol. Bioeng. 2011, 108, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Grainger, R.K.; James, D.C. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol. Bioeng. 2013, 110, 2970–2983. [Google Scholar] [CrossRef] [PubMed]
- Vijayasankaran, N.; Varma, S.; Yang, Y.; Mun, M.; Arevalo, S.; Gawlitzek, M.; Swartz, T.; Lim, A.; Li, F.; Zhang, B.; et al. Effect of cell culture medium components on color of formulated monoclonal antibody drug substance. Biotechnol. Prog. 2013, 29, 1270–1277. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, H.; Sun, Y.T.; Liu, X.; Tan, W.S.; Fan, L. Elucidating the effects of arginine and lysine on a monoclonal anti-body C-terminal lysine variation in CHO cell cultures. Appl. Microbiol. Biotechnol. 2015, 99, 6643–6652. [Google Scholar] [CrossRef]
- Hong, J.K.; Lee, S.M.; Kim, K.-Y.; Lee, G.M. Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Appl. Microbiol. Biotechnol. 2014, 98, 5417–5425. [Google Scholar] [CrossRef]
- Xu, Z.; Li, J.; Zhou, J.X. Process Development For Robust Removal of Aggregates Using Cation Exchange Chromatography In Monoclonal Antibody Purification With Implementation of Quality By Design. Prep. Biochem. Biotechnol. 2012, 42, 183–202. [Google Scholar] [CrossRef]
- Zhou, J.X.; Dermawan, S.; Solamo, F.; Flynn, G.; Stenson, R.; Tressel, T.; Guhan, S. pH-conductivity hybrid gradient cati-on-exchange chromatography for process-scale monoclonal antibody purification. J. Chromatogr. A. 2007, 1175, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Aono, H.; Wen, D.; Zang, L.; Houde, D.; Pepinsky, R.B.; Evans, D.R. Efficient on-column conversion of IgG1 trisulfide linkages to native disulfides in tandem with Protein A affinity chromatography. J. Chromatogr. A 2010, 1217, 5225–5232. [Google Scholar] [CrossRef]
- Arakawa, T.; Philo, J.S.; Tsumoto, K.; Yumioka, R.; Ejima, D. Elution of antibodies from a Protein-A column by aqueous ar-ginine solutions. Protein Expr. Purif. 2004, 36, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Djoumerska-Alexieva, I.K.; Dimitrov, J.D.; Voynova, E.N.; Lacroix-Desmazes, S.; Kaveri, S.V.; Vassilev, T.L. Exposure of IgG to an acidic environment results in molecular modifications and in enhanced protective activity in sepsis. FEBS J. 2010, 277, 3039–3050. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, P.; Nian, R. Conformational plasticity of IgG during protein A affinity chromatography. J. Chromatogr. A 2016, 1433, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Xing, Z.; Song, Y.; Huang, C.; Xu, X.; Ghose, S.; Li, Z.J. Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification. mAbs 2019, 11, 1479–1491. [Google Scholar] [CrossRef]
- Welfle, K.; Misselwitz, R.; Hausdorf, G.; Höhne, W.; Welfle, H. Conformation, pH-induced conformational changes, and thermal unfolding of anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab and Fc fragments. Biochim. et Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1999, 1431, 120–131. [Google Scholar] [CrossRef]
- Chi, B.; De Oliveira, G.; Gallagher, T.; Mitchell, L.; Knightley, L.; Gonzalez, C.C.; Russell, S.; Germaschewski, V.; Pearce, C.; Sellick, C.A. Pragmatic mAb lead molecule engi-neering from a developability perspective. Biotechnol. Bioeng. 2021, 118, 3733–3743. [Google Scholar] [CrossRef]
- Pace, A.L.; Wong, R.L.; Zhang, Y.T.; Kao, Y.-H.; Wang, Y.J. Asparagine Deamidation Dependence on Buffer Type, pH, and Temperature. J. Pharm. Sci. 2013, 102, 1712–1723. [Google Scholar] [CrossRef]
- Vázquez-Rey, M.; Lang, D.A. Aggregates in monoclonal antibody manufacturing processes. Biotechnol. Bioeng. 2011, 108, 1494–1508. [Google Scholar] [CrossRef]
- Alessandri, L.; Ouellette, D.; Acquah, A.; Rieser, M.; Leblond, D.; Saltarelli, M.; Radziejewski, C.; Fujimori, T.; Correia, I. Increased serum clearance of oligoman-nose species present on a human IgG1 molecule. mAbs 2012, 4, 509–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadgil, H.S.; Bondarenko, P.V.; Pipes, G.; Rehder, D.; McAuley, A.; Perico, N.; Dillon, T.; Ricci, M.; Treuheit, M. The LC/MS Analysis of Glycation of IGG Molecules in Sucrose Containing Formulations. J. Pharm. Sci. 2007, 96, 2607–2621. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Hoernschemeyer, J.; Mahler, H.C. Glycation during storage and administration of monoclonal antibody for-mulations. Eur. J. Pharm. Biopharm. 2008, 70, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Lam, X.M.; Yang, J.Y.; Cleland, J.L. Antioxidants for prevention of methionine oxidation in recombinant monoclonal anti-body HER2. J. Pharm. Sci. 1997, 86, 1250–1255. [Google Scholar] [CrossRef]
- Jones, M.T.; Mahler, H.-C.; Yadav, S.; Bindra, D.; Corvari, V.; Fesinmeyer, R.M.; Gupta, K.; Harmon, A.M.; Hinds, K.D.; Koulov, A.; et al. Considerations for the Use of Polysorbates in Biopharmaceuticals. Pharm. Res. 2018, 35, 148. [Google Scholar] [CrossRef]
- Dwivedi, M.; Blech, M.; Presser, I.; Garidel, P. Polysorbate degradation in biotherapeutic formulations: Identification and discussion of current root causes. Int. J. Pharm. 2018, 552, 422–436. [Google Scholar] [CrossRef]
- Kretsinger, J.; Frantz, N.; Hart, S.A.; Kelley, W.P.; Kitchen, B.; Novick, S.; Rellahan, B.; Stranges, D.; Stroop, C.J.M.; Yin, P.; et al. Expectations for Phase-Appropriate Drug Sub-stance and Drug Product Specifications for Early-Stage Protein Therapeutics. J. Pharm. Sci. 2019, 108, 1442–1452. [Google Scholar] [CrossRef]
- Alt, N.; Zhang, T.Y.; Motchnik, P.; Taticek, R.; Quarmby, V.; Schlothauer, T.; Beck, H.; Emrich, T.; Harris, R.J. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals 2016, 44, 291–305. [Google Scholar] [CrossRef]
- Group CBW. A-Mab: A Case Study in Bioprocess Development; CMC Biotech Working Group: Bangkok, Thailand, 2009. [Google Scholar]
Modifications | References |
---|---|
Common | |
Asn deamidation | [9,13,14,15,16,17,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42] |
Sialylation | [9,27,30,36,39,43,44,45,46] |
Glycation | [9,14,29,34,36,37,39,47,48] |
Oxidation | [14,29,30,44] |
Cysteine-related modifications | |
Unformed disulfide bond | [9,33,39,49] |
Non-reducible disulfide bond | [9] |
Trisulfide bond | [32,50] |
IgG2 disulfide bond isoforms | [24,32,34,50] |
Cysteinylation and glutathionylation | [39] |
Fragmentation | [9,14,33,39,44,45] |
Rare | |
Asp more acidic than isoAsp | [26,28] |
Succinimide intermediate of Asp isomerization | [34] |
IsoAsp from Asp isomerization | [32] |
Maleuric acid modification | [51] |
Tyrosine sulfation | [52] |
Citric acid modification | [53] |
Xylosone modification | [54] |
Leader sequence | [38] |
Sequence variant from Gly to Asp | [29] |
Arginine modification by methylglyoxal | [55] |
Aggregates | [33] |
Modifications | References |
---|---|
Common | |
C-terminal Lys | [9,13,27,28,30,32,34,36,39,40,43,45,63,64,65,66,67] |
C-terminal amidation | [32,34,67,68,69] |
Succinimide intermediate | [26,44,57,59] |
IsoAsp as Asp isomerization | [16,26,34,42] |
Leader sequence | [9,27,32,34,38,45,64,69] |
Aggregates | [9,10,33,40] |
N-terminal uncyclized Gln | [27,62,64,65] |
Oxidation | [36,46,60,61] |
IgG2 isoforms | [24,32,34,50] |
Rare | |
Sequence variant Ser to Arg or Glu to Lys | [70,71] |
Unformed disulfide bonds | [33,62] |
Cysteinylation | [38] |
Cyclization of N-terminal Glu to pyroGlu | [39,69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, A.; Nowak, C.; Meshulam, D.; Reynolds, K.; Chen, D.; Pacardo, D.B.; Nicholls, S.B.; Carven, G.J.; Gu, Z.; Fang, J.; et al. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies 2022, 11, 73. https://doi.org/10.3390/antib11040073
Beck A, Nowak C, Meshulam D, Reynolds K, Chen D, Pacardo DB, Nicholls SB, Carven GJ, Gu Z, Fang J, et al. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies. 2022; 11(4):73. https://doi.org/10.3390/antib11040073
Chicago/Turabian StyleBeck, Alain, Christine Nowak, Deborah Meshulam, Kristina Reynolds, David Chen, Dennis B. Pacardo, Samantha B. Nicholls, Gregory J. Carven, Zhenyu Gu, Jing Fang, and et al. 2022. "Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants" Antibodies 11, no. 4: 73. https://doi.org/10.3390/antib11040073
APA StyleBeck, A., Nowak, C., Meshulam, D., Reynolds, K., Chen, D., Pacardo, D. B., Nicholls, S. B., Carven, G. J., Gu, Z., Fang, J., Wang, D., Katiyar, A., Xiang, T., & Liu, H. (2022). Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies, 11(4), 73. https://doi.org/10.3390/antib11040073