Emerging Role of Antibody-Drug Conjugates and Bispecific Antibodies for the Treatment of Multiple Myeloma
Abstract
:1. Introduction
2. Role of Monoclonal Antibodies in RRMM
2.1. Daratumumab (Anti-CD38)
2.2. Isatuximab
2.3. Elotuzumab (Anti-SLAMF7)
2.4. Pembrolizumab (Anti-PD-1)
Monoclonal Antibody | Study Name/Phase | Single Agent vs. Combination | Efficacy | Most Common Grade ≥ 3 Toxicity (%) | ||
---|---|---|---|---|---|---|
ORR (%) | PFS (Months, %) | OS (Months, %) | ||||
Daratumumab | GEN501 + SIRIUS Phase II [14] | Single agent | 31.4% | 19.6% (3-year PFS) | 20.5 m, 36.5% (3-year OS) | Anemia (18%), thrombocytopenia/neutropenia (14%), hypertension (5%), back pain/hypercalcemia (3%), fatigue (3%) |
Chari et al. Phase I [15] | Combination with pomalidomide/dexamethasone | 60% | 8.8 m | 17.5 m, 66% (1-year OS) | Neutropenia (78%), anemia (28%), and leukopenia (24%) | |
GRIFFIN Phase II [16] | Combination with bortezomib/lenalidomide/dexamethasone | 99% | - | - | Neutropenia (41.4%), peripheral neuropathy/diarrhea (7.1% each) | |
ALCYONE Phase III [17] | Combination with bortezomib/melphalan/prednisone | 90.9% | 50.7% (3-year PFS) | 78% (3-year OS) | Neutropenia (39.9%), infections (23.1%), IRRs (4.9%) | |
MAIA Phase III [18] | Combination with lenalidomide/dexamethasone | 92.9% | - | - | Neutropenia (50%), infections (32.1%), fatigue (8%) | |
CASSIOPEIA Phase III [19] | Combination with bortezomib/thalidomide/dexamethasone | 92.6% | - | - | Neutropenia (28%), stomatitis (13%), peripheral neuropathy (9%) | |
CASTOR Phase III [20] | Combination with bortezomib/dexamethasone | 83.8% | 60.7% (1-year PFS) | - | Thrombocytopenia (45.7%), pneumonia (9.9%), hypertension (6.6%) | |
POLLUX Phase III [21] | Combination with lenalidomide/dexamethasone | 92.9% | 85.7% (1-year PFS) | 92.1% (1-year OS) | Neutropenia (55.5%), pneumonia (15.2%), diarrhea (9.9%) | |
CANDOR Phase III [22] | Combination with carfilzomib/dexamethasone | 84% | - | - | Thrombocytopenia (24%), respiratory infection (29%), hypertension (18%) | |
PAVO Phase Ib [23] | Single agent (SC route) | 42.2% | - | - | Anemia (15.6%), hypertension (8.9%), pneumonia/RSV/hyponatremia (4.4% each), device-related infections (4.4%) | |
COLUMBA Phase III [24] | Single age (SC vs. IV) | 41% for SC vs. 37% for IV | 5.6 m for SC vs. 6.1 m for IV. | - | Anemia (13% SC vs. 14% IV), neutropenia (13% SC vs. 8% IV), thrombocytopenia (13% in SC vs. IV), pneumonia (3% SC vs. 4% IV) | |
PLEIADES Phase II [25] | SC in combination with bortezomib/lenalidomide/dexamethasone | 89.6% | Neutropenia (37.3%), lymphopenia (22.4%), thrombocytopenia (43.3%), injection-site reactions (7.5%) | |||
Isatuximab | TCD11863 Phase I [26] | Combination with lenalidomide/dexamethasone | 56% | 8.5 m | Neutropenia (60%), pneumonia (9%), fatigue (7%) | |
TCD14079 Phase I [27] | Combination with pomalidomide/dexamethasone | 62.2% | 17.6 m | - | Neutropenia (84%), pneumonia (18%), fatigue/urinary tract infection/traumatic fracture (7% each), syncope/dyspnea/hypertension (7% each) | |
GMMC-CONCEPT Phase Ib [28] | Combination with carfilzomib/lenalidomide/dexamethasone | 100% | - | - | Neutropenia (34%), hypertension (12%), cardiac failure (4%) | |
ICARIA-MM Phase III [29] | Combination with pomalidomide/dexamethasone | 60% | 11.5 m | - | Neutropenia (85%), pneumonia (16%), dyspnea (4% vs. 1%) | |
IKEMA Phase III [30] | Combination with carfilzomib/dexamethasone | 86.6% | - | - | Respiratory infections (32.2%), cardiac failure (4%), thrombocytopenia (29.9%), neutropenia (19.2%) | |
Elotuzumab | ELOQUENT-3 Phase III [31] | Combination with pomalidomide/dexamethasone | 53% | 10.3 m | - | Neutropenia/infections (13% each), hyperglycemia (8%) |
ELOQUENT-2 Phase III [32] | Combination with lenalidomide/dexamethasone | 79% | 19.4 m | 30% | Lymphopenia (79%), infections (33%), pneumonia (14%) | |
Pembrolizumab | KEYNOTE-023 Phase I [33] | Combination with lenalidomide/dexamethasone | 44% | 7.2 m | - | Neutropenia (27.4%), hyperglycemia/pneumonia (6.5% each), atrial fibrillation/insomnia (3.2% each) |
HP-00061522 Phase I/II [34] | Combination with pomalidomide/dexamethasone | 60% | 17.4 m | - | Neutropenia (42%), hyperglycemia (21%), fatigue (15%), pneumonia (15%) |
3. Antibody-Drug Conjugates (ADC)
3.1. Belantamab Mafodotin
3.2. Lorvotuzumab Mertansine
3.3. HDP-101
3.4. Anti-ICAM1
3.5. AMG 224
3.6. ABBV-838
3.7. Anti-FcRH5
ADCs | Study Name/Phase | Single Agent vs. Combination | Efficacy | Most Common Grade ≥ 3 Toxicity (%) | |
---|---|---|---|---|---|
ORR (%) | PFS (Months, Weeks) | ||||
Belantamab mafodotin | DREAMM-2 Phase II [43] | Single agent (low vs. high dose) | 31% vs. 34% | 2.9 m vs. 4.9 m | Keratopathy (27% vs. 21%), thrombocytopenia (20% vs. 33%), anemia (20% vs. 25%) |
DREAMM-9 Phase I [45] | Single agent vs. standard of care | - | - | Thrombocytopenia/neutropenia (100% each), keratopathy (100%) | |
Lorvotuzumab mertansine | Chanan-Khan et al. Phase I [55] | Single agent | 17.9% | - | Fatigue/weakness/peripheral neuropathy/renal failure (1 each) |
Ailawadi et al. Phase I [56] | Single agent | - | 26.1 weeks | Fatigue (5.4%), areflexia/peripheral neuropathy/neutropenia (2.7%) | |
Berdeja et al. Phase I [57] | Lorvotuzumab + lenalidomide/dexamethasone | 59% | - | Tumor lysis syndrome (10%), neutropenia/thrombocytopenia/anemia (5% each), hemolytic anemia/LDH increase (5% each) | |
HDP-101 | Strassz et al. Phase I/IIa [67] | Single agent (human) | - | - | - |
Anti-ICAM1 | Hansson et al. Phase 1 [69] | Single agent (human) | - | - | - |
AMG 224 | Hans et al. Phase I [74] | Single agent | 23% | - | Thrombocytopenia (31%) |
ABBV 838 | Ravi et al. Phase I [76] | Single agent | 10.7% | - | Neutropenia/anemia (28% each), thrombocytopenia (17.3%), keratopathy (16%) |
Anti-FcRH5 | Stewart et al. Phase I [81] | Single agent | - | - | Neutropenia/infections (10.3% each), nervous system disorder (7.7%) |
4. Bispecific Antibodies (BiAbs)
4.1. Teclistamab
4.2. CC-93269
4.3. AMG 420
4.4. PF-3135
4.5. REGN5458
4.6. Talquetamab
Bispecific Antibody | Study Name/Phase | Single Agent vs. Combination | Efficacy | Most Common Grade ≥ 3 toxicity (%) |
---|---|---|---|---|
ORR (%) | ||||
Teclistamab | MasjesTEC-1 Phase I [86] | Single Agent | 65% | Neutropenia (40%), anemia (27%), thrombocytopenia (18%), fatigue (2%) |
CC-93269 | Costa et al. Phase I [95] | Single agent | 89% | Neutropenia (43%), anemia (37%), infections (30%), thrombocytopenia (17%) |
AMG 420 | Topp et al. Phase I [98] | Single agent | 70% | Cytokine release syndrome (n = 3), polyneuropathy (n = 2), edema (n = 1) |
PF-3135/Elranatamab | Levy et al. Phase I [102] | Single agent | 33% | Lymphopenia (83%), neutropenia (53%), anemia (50%), thrombocytopenia (37%) |
REGN5458 | Madduri et al. Phase I/II [103] | single agent | 35% | Infection (20%), anemia (8.9%), lymphopenia (6.7%), AKI (n = 1), syncope (n = 1), and transaminitis (n = 1) |
Talquetamab | Berdeja et al. Phase 1 [107] | Single agent | - | CRS (4%), neutropenia (54%), anemia (29%), and infections (4%) |
5. CAR-T-Cell
5.1. Idecabtagene Vicleucel
5.2. Ciltacabtagene Autoleucel
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joshua, D.E.; Bryant, C.; Dix, C.; Gibson, J.; Ho, J. Biology and therapy of multiple myeloma. Med. J. Aust. 2019, 210, 375–380. [Google Scholar] [PubMed]
- Riccomi, G.; Fornaciari, G.; Giuffra, V. Multiple myeloma in paleopathology: A critical review. Int. J. Paleopathol. 2019, 24, 201–212. [Google Scholar] [PubMed]
- Palumbo, A.; Anderson, K. Multiple myeloma. N. Engl. J. Med. 2011, 11, 1046–1060. [Google Scholar]
- Landgren, O. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: Biological insights and early treatment strategies. Hematol. Am. Soc. Hematol. Educ. Program 2013, 2013, 478–487. [Google Scholar]
- Kyle, R.A.; Therneau, T.M.; Rajkumar, S.V.; Larson, D.R.; Plevak, M.F. Long-term follow-up of 241 patients with monoclonal gammopathy of undetermined significance: The Original Mayo Clinic series 25 years later. Mayo Clin. Proc. 2004, 7, 859–866. [Google Scholar]
- Landgren, O.; Kyle, R.A.; Pfeiffer, R.M.; Katzmann, J.A.; Caporaso, N.E.; Hayes, R.B.; Dispenzieri, A.; Kumar, S.; Clark, R.J.; Baris, D.; et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood 2009, 22, 5412–5417. [Google Scholar]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, 538–548. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2016, 1, 7–30. [Google Scholar]
- Sonneveld, P.; Avet-Loiseau, H.; Lonial, S.; Usmani, S.; Siegel, D.; Anderson, K.C.; Chng, W.J.; Moreau, P.; Attal, M.; Kyle, R.A.; et al. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood 2016, 24, 2955–2962. [Google Scholar]
- Rajkumar, S.V.; Harousseau, J.L.; Durie, B.; Anderson, K.C. Consensus Recommendations for the Uniform Reporting of Clinical Trials: Report of the International Myeloma Workshop Consensus Panel 1. Blood 2011, 117, 4691–4695. [Google Scholar]
- Anderson, K.C.; Kyle, R.A.; Rajkumar, S.V.; Stewart, A.K. Clinically Relevant End Points and New Drug Approvals for Myeloma. Leukemia 2008, 2, 231–239. [Google Scholar]
- Lokhorst, H.M.; Plesner, T.; Laubach, J.P.; Nahi, H.; Gimsing, P.; Hansson, M.; Minnema, M.C.; Lassen, U.; Krejcik, J.; Palumbo, A.; et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N. Engl. J. Med. 2015, 373, 1207–1219. [Google Scholar] [PubMed]
- Lonial, S.; Weiss, B.M.; Usmani, S.Z.; Singhal, S.; Chari, A. Daratumumab Monotherapy in Patients with Treatment-Refractory Multiple Myeloma (Sirius): An Open-Label, Randomised, Phase 2 Trial. Lancet 2016, 387, 1551–1560. [Google Scholar] [PubMed]
- Usmani, S.Z.; Nahi, H.; Plesner, T.; Weiss, B.M.; Bahlis, N.J.; Belch, A.; Voorhees, P.M.; Laubach, J.P.; van de Donk, N.W.; Ahmadi, T.; et al. Daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma: Final results from the phase 2 GEN501 and SIRIUS trials. Lancet Haematol. 2020, 6, e447–e455. [Google Scholar]
- Chari, A.; Suvannasankha, A.; Fay, J.W.; Arnulf, B.; Kaufman, J.L.; Ifthikharuddin, J.J.; Weiss, B.M.; Krishnan, A.; Lentzsch, S.; Comenzo, R.; et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood 2017, 8, 974–981. [Google Scholar]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.; Sborov, D.W. Daratumumab, Lenalidomide, Bortezomib, and Dexamethasone for Transplant-Eligible Newly Diagnosed Multiple Myeloma: The Griffin Trial. Blood 2020, 136, 936–945. [Google Scholar]
- Mateos, M.V.; Cavo, M.; Blade, J.; Dimopoulos, M.A. Overall Survival with Daratumumab, Bortezomib, Melphalan, and Prednisone in Newly Diagnosed Multiple. Lancet 2020, 395, 132–141. [Google Scholar]
- Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z. Daratumumab Plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, Thalidomide, and Dexamethasone with or without Daratumumab before and after Autologous Stem-Cell Transplantation for Newly Diagnosed Multiple Myeloma (Cassiopeia): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 29–38. [Google Scholar]
- Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [PubMed] [Green Version]
- Dimopoulos, M.; Quach, H.; Mateos, M.V.; Landgren, O. Carfilzomib, Dexamethasone, and Daratumumab Versus Carfilzomib and Dexamethasone for Patients with Relapsed or Refractory Multiple Myeloma (Candor): Results from a Randomised, Multicentre, Open-Label, Phase 3 Study. Lancet 2020, 396, 186–197. [Google Scholar] [PubMed]
- Usmani, S.Z.; Nahi, H.; Mateos, M.V.; van de Donk, N.W.C.J. Subcutaneous Delivery of Daratumumab in Relapsed or Refractory Multiple Myeloma. Blood 2019, 134, 668–677. [Google Scholar] [PubMed] [Green Version]
- Mateos, M.V.; Nahi, H.; Legiec, W.; Grosicki, S. Subcutaneous Versus Intravenous Daratumumab in Patients with Relapsed or Refractory Multiple Myeloma (Columba): A Multicentre, Open-Label, Non-Inferiority, Randomised, Phase 3 Trial. Lancet Haematol. 2020, 7, e370–e380. [Google Scholar] [PubMed]
- Chari, A.; Rodriguez-Otero, P.; McCarthy, H.; Suzuki, K. Subcutaneous Daratumumab Plus Standard Treatment Regimens in Patients with Multiple Myeloma across Lines of Therapy (Pleiades): An Open-Label Phase I Study. Br. J. Haematol. 2021, 192, 869–878. [Google Scholar] [PubMed]
- Martin, T.; Baz, R.; Benson, D.M.; Lendvai, N. A Phase 1b Study of Isatuximab Plus Lenalidomide and Dexamethasone for Relapsed/Refractory Multiple Myeloma. Blood 2017, 129, 3294–3303. [Google Scholar]
- Mikhael, J.; Richardson, P.; Usmani, S.Z.; Raje, N. A Phase 1b Study of Isatuximab Plus Pomalidomide/Dexamethasone in Relapsed/Refractory Multiple Myeloma. Blood 2019, 134, 123–133. [Google Scholar]
- Leypoldt, L.; Besemer, B.B.; Asemissen, A.M.; Hänel, M. Isatuximab, Carfilzomib, Lenalidomide, and Dexamethasone (Isa-Krd) in Front-Line Treatment of High-Risk Multiple Myeloma: Interim Analysis of the Gmmg-Concept Trial. Leukemia 2021, 36, 885–888. [Google Scholar]
- Attal, M.; Richardson, P.G.; Rajkumar, S.V.; San-Miguel, J. Isatuximab Plus Pomalidomide and Low-Dose Dexamethasone Versus Pomalidomide and Low-Dose Dexamethasone in Patients with Relapsed and Refractory Multiple Myeloma (Icaria-Mm): A Randomised, Multicentre, Open-Label, Phase 3 Study. Lancet 2019, 394, 2096–2107. [Google Scholar]
- Moreau, P.; Dimopoulos, M.A.; Mikhael, J.; Yong, K. Isatuximab, Carfilzomib, and Dexamethasone in Relapsed Multiple Myeloma (Ikema): A Multicentre, Open-Label, Randomised Phase 3 Trial. Lancet 2021, 397, 2361–2371. [Google Scholar]
- Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P. Elotuzumab Plus Pomalidomide and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2018, 379, 1811–1822. [Google Scholar] [PubMed]
- Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2018, 373, 621–631. [Google Scholar]
- Mateos, M.V.; Orlowski, R.Z.; Ocio, E.M.; Rodríguez-Otero, P. Pembrolizumab Combined with Lenalidomide and Low-Dose Dexamethasone for Relapsed or Refractory Multiple Myeloma: Phase I Keynote-023 Study. Br. J. Haematol. 2019, 186, e117–e121. [Google Scholar] [PubMed] [Green Version]
- Badros, A.; Hyjek, E.; Ma, N.; Lesokhin, A. Pembrolizumab, Pomalidomide, and Low-Dose Dexamethasone for Relapsed/Refractory Multiple Myeloma. Blood 2017, 130, 1189–1197. [Google Scholar]
- Elgueta, R.; de Vries, V.C.; Noelle, R.J. The immortality of humoral immunity. Immunol. Rev. 2010, 236, 139–150. [Google Scholar]
- O’Connor, B.P.; Raman, V.S.; Erickson, L.D.; Cook, W.J.; Weaver, L.K.; Ahonen, C.; Lin, L.L.; Mantchev, G.T.; Bram, R.J.; Noelle, R.J. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 2004, 199, 91–97. [Google Scholar]
- Xu, S.; Lam, K.P. B-cell maturation protein, which binds the tumor necrosis factor family members BAFF and APRIL, is dispensable for humoral immune responses. Mol. Cell. Biol. 2001, 21, 4067–4074. [Google Scholar]
- Claudio, J.O.; Masih-Khan, E.; Tang, H.; Gonçalves, J.; Voralia, M.; Li, Z.H.; Nadeem, V.; Cukerman, E.; Francisco-Pabalan, O.; Liew, C.C.; et al. A molecular compendium of genes expressed in multiple myeloma. Blood 2002, 100, 2175–2186. [Google Scholar]
- Tai, Y.T.; Li, X.F.; Breitkreutz, I.; Song, W.; Neri, P.; Catley, L.; Podar, K.; Hideshima, T.; Chauhan, D.; Raje, N.; et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006, 66, 6675–6682. [Google Scholar]
- Carpenter, R.O.; Evbuomwan, M.O.; Pittaluga, S.; Rose, J.J.; Raffeld, M.; Yang, S.; Gress, R.E.; Hakim, F.T.; Kochenderfer, J.N. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 2013, 19, 2048–2060. [Google Scholar]
- Tai, Y.T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; et al. Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 2014, 123, 3128–3138. [Google Scholar] [PubMed]
- Eliason, L.; Opalinska, J.; Martin, M.L.; Correll, J.; Gutierrez, B.; Popat, R. DREAMM-1 Patient perspectives from the first-in-human study of single-agent belantamab mafodotin for relapsed and refractory multiple myeloma (RRMM). J. Clin. Oncol. 2020, 38, e20531. [Google Scholar]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [PubMed]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [PubMed]
- Usmani, S.Z.; Alonso, A.A.; Quach, H.; Koh, Y.; Guenther, A.; Min, C.K.; Zhou, X.L.; Kaisermann, M.; Mis, L.M.; Williams, D.; et al. DREAMM-9: Phase I Study of Belantamab Mafodotin Plus Standard of Care in Patients with Transplant-Ineligible Newly Diagnosed Multiple Myeloma. Blood 2021, 138, 2738. [Google Scholar]
- Nooka, A.K.; Manteca, M.V.M.; Bahlis, N.; Weisel, K.; Oriol, A.; Alonso, A.A.; Suvannasankha, A.; Holkova, B.; Luptakova, K.; Fecteau, D.; et al. Dreamm-4: Evaluating safety and clinical activity of belantamab mafodotin (belamaf) in combination with pembrolizumab in patients with relapsed/refractory multiple myeloma (RRMM). Hematol. Rep. 2020, 12. [Google Scholar]
- Popat, R.; Warcel, D.; O’Nions, J.; Cowley, A. Characterization of response and corneal events with extended follow-up after belantamab mafodotin (GSK2857916) monotherapy for patients with relapsed multiple myeloma: A case series from the first-time-in-human clinical trial. Haematologica 2020, 105, e261–e263. [Google Scholar]
- Whiteman, K.R.; Johnson, H.A.; Mayo, M.F.; Audette, C.A.; Carrigan, C.N.; LaBelle, A.; Zukerberg, L.; Lambert, J.M.; Lutz, R.J. Lorvotuzumab mertansine, a CD56-targeting antibody-drug conjugate with potent antitumor activity against small cell lung cancer in human xenograft models. MAbs 2014, 6, 556–566. [Google Scholar]
- Thiery, J.P.; Brackenbury, R.; Rutishauser, U.; Edelman, G.M. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J. Biol. Chem. 1977, 252, 6841–6845. [Google Scholar]
- Sahara, N.; Takeshita, A.; Shigeno, K.; Fujisawa, S.; Takeshita, K.; Naito, K.; Ihara, M.; Ono, T.; Tamashima, S.; Nara, K.; et al. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br. J. Haematol. 2002, 117, 882–885. [Google Scholar]
- Van Camp, B.; Durie, B.G.; Spier, C.; De Waele, M.; Van Riet, I.; Vela, E.; Frutiger, Y.; Richter, L.; Grogan, T.M. Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood 1990, 76, 377–382. [Google Scholar]
- Ely, S.A.; Knowles, D.M. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am. J. Pathol. 2002, 160, 1293–1299. [Google Scholar]
- Tassone, P.; Gozzini, A.; Goldmacher, V.; Shammas, M.A.; Whiteman, K.R.; Carrasco, D.R.; Li, C.; Allam, C.K.; Venuta, S.; Anderson, K.C.; et al. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res. 2004, 64, 4629–4636. [Google Scholar] [PubMed] [Green Version]
- Benjamin, R.; Condomines, M.; Gunset, G.; Sadelain, M. Abstract 3499: CD56 targeted chimeric antigen receptors for immunotherapy of multiple myeloma. Cancer Res. 2012, 72, 3499. [Google Scholar]
- Chanan-Khan, A.; Wolf, J.L.; Garcia, J.; Gharibo, M.; Jagannath, S.; Manfredi, D.; Sher, T.; Martin, C.; Zildjian, S.H.; O’Leary, J.; et al. Efficacy Analysis From Phase I Study of Lorvotuzumab Mertansine (IMGN901), Used as Monotherapy, In Patients with Heavily Pre-Treated CD56-Positive Multiple Myeloma—A Preliminary Efficacy Analysis. Blood 2010, 116, 1962. [Google Scholar]
- Ailawadhi, S.; Kelly, K.R.; Vescio, R.A.; Jagannath, S.; Wolf, J.; Gharibo, M.; Sher, T.; Bojanini, L.; Kirby, M.; Chanan-Khan, A. A Phase I Study to Assess the Safety and Pharmacokinetics of Single-agent Lorvotuzumab Mertansine (IMGN901) in Patients with Relapsed and/or Refractory CD-56-positive Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 29–34. [Google Scholar]
- Berdeja, J.; Hernandez-Ilizaliturri, F.; Chanan-Khan, A.; Patel, M. Phase I Study of Lorvotuzumab Mertansine (LM, IMGN901) in Combination with Lenalidomide (Len) and Dexamethasone (Dex) in Patients with CD56-Positive Relapsed or Relapsed/Refractory Multiple Myeloma (MM). Blood 2012, 120, 728. [Google Scholar]
- Richardson, P.; Weller, E.; Lonial, S.; Jakubowiak, A.J. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010, 116, 679–686. [Google Scholar]
- Bruins, W.S.C.; Zweegman, S.; Mutis, T.; van de Donk, N.W.C.J. Targeted Therapy with Immunoconjugates for Multiple Myeloma. Front. Immunol. 2020, 11, 1155. [Google Scholar]
- Figueroa-Vazquez, V.; Ko, J.; Breunig, C.; Baumann, A.; Giesen, N.; Pálfi, A.; Müller, C.; Lutz, C.; Hechler, T.; Kulke, M.; et al. HDP-101, an Anti-BCMA Antibody-Drug Conjugate, Safely Delivers Amanitin to Induce Cell Death in Proliferating and Resting Multiple Myeloma Cells. Mol. Cancer Ther. 2021, 20, 367–378. [Google Scholar]
- Yu, B.; Jiang, T.; Liu, D. BCMA-targeted immunotherapy for multiple myeloma. J. Hematol. Oncol. 2020, 13, 125. [Google Scholar] [PubMed]
- Pahl, A.; Lutz, C.; Hechler, T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov. Today Technol. 2018, 30, 85–90. [Google Scholar] [PubMed]
- Matinkhoo, K.; Pryyma, A.; Todorovic, M.; Patrick, B.O.; Perrin, D.M. Synthesis of the Death-Cap Mushroom Toxin α-Amanitin. J. Am. Chem. Soc. 2018, 140, 6513–6517. [Google Scholar] [PubMed]
- Singh, R.K.; Jones, R.J.; Shirazi, F.; Hong, S.; Wang, H.; Wan, J.; Kuitase, I.; Pahl, A.; Orlowski, R.Z. HDP-101, a Novel BCMA-targeted Antibody Conjugated to α-Amanitin, is Active against Myeloma with Preferential Efficacy against Pre-clinical Models of Deletion 17p. Clin. Lymphoma Myeloma Leuk. 2019, 19, e152. [Google Scholar]
- Abramson, H.N. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther. 2021, 10, 343–371. [Google Scholar]
- Cho, S.-F.; Anderson, K.C.; Tai, Y.-T. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front. Immunol. 2018, 9, 1821. [Google Scholar] [CrossRef]
- Strassz, A.; Raab, M.S.; Orlowski, R.Z.; Kulke, M.; Schiedner, G.; Pahl, A. A First in Human Study Planned to Evaluate Hdp-101, an Anti-BCMA Amanitin Antibody-Drug Conjugate with a New Payload and a New Mode of Action, in Multiple Myeloma. Blood 2020, 136, 34. [Google Scholar]
- Schmidmaier, R.; Mörsdorf, K.; Baumann, P.; Emmerich, B.; Meinhardt, G. Evidence for cell adhesion-mediated drug resistance of multiple myeloma cells in vivo. Int. J. Biol. Markers 2006, 21, 218–222. [Google Scholar]
- Sherbenou, D.W.; Su, Y.; Behrens, C.R.; Aftab, B.T.; de Acha, O.P.; Murnane, M.; Bearrows, S.C.; Hann, B.C.; Wolf, J.L.; Martin, T.G.; et al. Potent Activity of an Anti-ICAM1 Antibody–Drug Conjugate against Multiple Myeloma. Clin. Cancer Res. 2020, 26, 6028–6038. [Google Scholar]
- Veitonmäki, N.; Hansson, M.; Zhan, F.; Sundberg, A.; Löfstedt, T.; Ljungars, A.; Li, Z.-C.; Martinsson-Niskanen, T.; Zeng, M.; Yang, Y.; et al. A human ICAM-1 antibody isolated by a function-first approach has potent macrophage-dependent antimyeloma activity in vivo. Cancer Cell 2013, 23, 502–515. [Google Scholar]
- Hansson, M.; Gimsing, P.; Badros, A.; Niskanen, T.M.; Nahi, H.; Offner, F.; Salomo, M.; Sonesson, E.; Mau-Sørensen, M.; Stenberg, Y.; et al. A phase I dose-escalation study of antibody BI-505 in relapsed/refractory multiple myeloma. Clin. Cancer Res. 2015, 21, 2730–2736. [Google Scholar] [PubMed] [Green Version]
- Wichert, S.; Juliusson, G.; Johansson, Å.; Sonesson, E.; Teige, I.; Wickenberg, A.T.; Frendeus, B.; Korsgren, M.; Hansson, M. A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma. PLoS ONE 2017, 12, e0171205. [Google Scholar]
- Klausz, K.; Cieker, M.; Kellner, C.; Rösner, T.; Otte, A.; Krohn, S.; Lux, A.; Nimmerjahn, F.; Valerius, T.; Gramatzki, M.; et al. Fc-engineering significantly improves the recruitment of immune effector cells by anti-ICAM-1 antibody MSH-TP15 for myeloma therapy. Haematologica 2021, 106, 1857. [Google Scholar] [PubMed]
- Lee, H.C.; Raje, N.S.; Landgren, O.; Upreti, V.V.; Wang, J.; Avilion, A.A.; Hu, X.; Rasmussen, E.; Ngarmchamnanrith, G.; Fujii, H.; et al. Phase 1 study of the anti-BCMA antibody-drug conjugate AMG 224 in patients with relapsed/refractory multiple myeloma. Leukemia 2021, 35, 255–258. [Google Scholar]
- Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Hoos, A.; Gupta, I.; Bragulat, V.; et al. Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study. Blood Cancer J. 2019, 9, 37. [Google Scholar]
- Vij, R.; Nath, R.; Afar, D.E.; Mateos, M.V.; Berdeja, J.G.; Raab, M.S.; Guenther, A.; Martínez-López, J.; Jakubowiak, A.J.; Leleu, X.; et al. First-in-Human Phase I Study of ABBV-838, an Antibody–Drug Conjugate Targeting SLAMF7/CS1 in Patients with Relapsed and Refractory Multiple Myeloma. Clin. Cancer Res. 2020, 26, 2308–2317. [Google Scholar]
- Hsi, E.D.; Steinle, R.; Balasa, B.; Szmania, S.; Draksharapu, A.; Shum, B.P.; Huseni, M.; Powers, D.; Nanisetti, A.; Zhang, Y.; et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin. Cancer Res. 2008, 14, 2775–2784. [Google Scholar]
- Tai, Y.-T.; Dillon, M.; Song, W.; Leiba, M.; Li, X.-F.; Burger, P.; Lee, A.I.; Podar, K.; Hideshima, T.; Rice, A.G.; et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2008, 112, 1329–1337. [Google Scholar]
- Gish, K.; Kim, H.; Power, R.; Fox, M.; Hickson, J.; McGonigal, T.; Chao, D.; Sho, M.; Singh, H.; Tarcsa, E.; et al. Preclinical evaluation of ABBV-838, a first-in-class anti-CS1 antibody-drug conjugate for the treatment of multiple myeloma. In Proceedings of the 21st European Hematology Association Congress, Copenhagen, Denmark, 9–12 June 2016. [Google Scholar]
- McMillan, A.; Warcel, D.; Popat, R. Antibody-drug conjugates for multiple myeloma. Expert Opin. Biol. Ther. 2021, 21, 889–901. [Google Scholar]
- Stewart, A.K.; Krishnan, A.Y.; Singhal, S.; Boccia, R.V.; Patel, M.R.; Niesvizky, R.; Chanan-Khan, A.A.; Ailawadhi, S.; Brumm, J.; Mundt, K.E.; et al. Phase I study of the anti-FcRH5 antibody-drug conjugate DFRF4539A in relapsed or refractory multiple myeloma. Blood Cancer J. 2019, 9, 17. [Google Scholar]
- Elkins, K.; Zheng, B.; Go, M.; Slaga, D.; Du, C.; Scales, S.J.; Yu, S.-F.; McBride, J.; De Tute, R.; Rawstron, A.; et al. FcRL5 as a target of antibody-drug conjugates for the treatment of multiple myeloma. Mol. Cancer Ther. 2012, 11, 2222–2232. [Google Scholar] [PubMed] [Green Version]
- Shah, U.A.; Mailankody, S. Emerging immunotherapies in multiple myeloma. BMJ 2020, 370, m3176. [Google Scholar] [PubMed]
- Pillarisetti, K.; Powers, G.; Luistro, L.; Babich, A.; Baldwin, E.; Li, Y.; Zhang, X.; Mendonça, M.; Majewski, N.; Nanjunda, R.; et al. Teclistamab is an active T cell–redirecting bispecific antibody against B-cell maturation antigen for multiple myeloma. Blood Adv. 2020, 4, 4538–4549. [Google Scholar]
- Frerichs, K.A.; Broekmans, M.E.; Soto, J.A.M.; van Kessel, B.; Heymans, M.W.; Holthof, L.C.; Verkleij, C.P.; Boominathan, R.; Vaidya, B.; Sendecki, J.; et al. Preclinical activity of JNJ-7957, a novel BCMA × CD3 bispecific antibody for the treatment of multiple myeloma, is potentiated by daratumumab. Clin. Cancer Res. 2020, 26, 2203–2215. [Google Scholar]
- Usmani, S.Z.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Rosinol, L.; Chari, A.; Bhutani, M.; Karlin, L.; et al. Teclistamab, a B-cell maturation antigen× CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): A multicentre, open-label, single-arm, phase 1 study. Lancet 2021, 665–674. [Google Scholar]
- Sanchez, L.; Dardac, A.; Madduri, D.; Richard, S.; Richter, J. B-cell maturation antigen (BCMA) in multiple myeloma: The new frontier of targeted therapies. Ther. Adv. Hematol. 2021, 12, 2040620721989585. [Google Scholar] [PubMed]
- A Study of Teclistamab, in Participants with Relapsed or Refractory Multiple Myeloma (MajesTEC-1). NCT04557098. Available online: https://clinicaltrials.gov/ct2/show/NCT04557098 (accessed on 18 March 2022).
- Girgis, S.; Lin, S.X.W.; Pillarisetti, K.; Verona, R.; Vieyra, D.; Casneuf, T.; Fink, D.; Miao, X.; Chen, Y.; Stephenson, T.; et al. P-001: Modulation of soluble B-cell maturation antigen levels in patients with relapsed and/or refractory multiple myeloma after treatment with teclistamab and talquetamab. Clin. Lymphoma Myeloma Leuk. 2021, 21, S39–S40. [Google Scholar]
- A Study of Teclistamab in Combination with Daratumumab Subcutaneously (SC) (Tec-Dara) Versus Daratumumab SC, Pomalidomide, and Dexamethasone (DPd) or Daratumumab SC, Bortezomib, and Dexamethasone (DVd) in Participants with Relapsed or Refractory Multiple Myeloma (MajesTEC-3). Available online: https://clinicaltrials.gov/ct2/show/NCT05083169 (accessed on 18 March 2022).
- Seckinger, A.; Delgado, J.A.; Moser, S.; Moreno, L.; Neuber, B.; Grab, A.; Lipp, S.; Merino, J.; Prosper, F.; Emde, M.; et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell 2017, 31, 396–410. [Google Scholar]
- Verkleij, C.P.; Bruins, W.S.; Zweegman, S.; van de Donk, N. Immunotherapy with Antibodies in Multiple Myeloma: Monoclonals, Bispecifics, and Immunoconjugates. Hemato 2021, 1, 116–130. [Google Scholar]
- Costa, L.J.; Wong, S.W.; Bermudez, A.; de la Rubia, J.; Mateos, M.V.; Ocio, E.M.; Rodriguez-Otero, P.; San-Miguel, J.; Li, S.; Sarmiento, R.; et al. First clinical study of the B-cell maturation antigen (BCMA) 2 + 1 T cell engager (TCE) CC-93269 in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Interim results of a phase 1 multicenter trial. Blood 2019, 134, 143. [Google Scholar]
- Swan, D.; Routledge, D.; Harrison, S. The evolving status of immunotherapies in multiple myeloma: The future role of bispecific antibodies. Br. J. Haematol. 2021, 196, 488–506. [Google Scholar] [PubMed]
- Costa, L.J.; Wong, S.W.; Bermudez, A.; De la Rubia, J.; Mateos, M.V.; Ocio, E.M.; Rodríguez-Otero, P.; San Miguel, J.; Li, S.; Sarmiento, R.; et al. Interim results from the first phase 1 clinical study of the B-cell maturation antigen (BCMA) 2 + 1 T cell engager (TCE) CC-93269 in patients (PTS) with relapsed/refractory multiple myeloma (RRMM). EHA Libr. 2020, 295025, S205. [Google Scholar]
- Hipp, S.; Tai, Y.T.; Blanset, D.; Deegen, P.; Wahl, J.; Thomas, O.; Rattel, B.; Adam, P.J.; Anderson, K.C.; Friedrich, M. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia 2017, 31, 1743–1751. [Google Scholar] [PubMed]
- Ross, S.L.; Sherman, M.; McElroy, P.L.; Lofgren, J.A.; Moody, G.; Baeuerle, P.A.; Coxon, A.; Arvedson, T. Bispecific T cell engager (Bite®) antibody constructs can mediate bystander tumor cell killing. PLoS ONE 2017, 12, e0183390. [Google Scholar]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti–b-cell maturation antigen bite molecule amg 420 induces responses in multiple myeloma. JCO 2020, 38, 775–783. [Google Scholar]
- Shah, N.; Chari, A.; Scott, E.; Mezzi, K.; Usmani, S.Z. B-cell maturation antigen (Bcma) in multiple myeloma: Rationale for targeting and current therapeutic approaches. Leukemia 2020, 34, 985–1005. [Google Scholar]
- Huehls, A.M.; Coupet, T.A.; Sentman, C.L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell. Biol. 2015, 93, 290–296. [Google Scholar]
- Lesokhin, A.M.; Levy, M.Y.; Dalovisio, A.P.; Bahlis, N.J.; Solh, M.; Sebag, P.F.M.; Jakubowiak, A.; Jethava, M.Y.S.; Costello, C.L.; Chu, M.P.; et al. Preliminary Safety, Efficacy, Pharmacokinetics, and Pharmacodynamics of Subcutaneously (SC) Administered PF-06863135, a B-Cell Maturation Antigen (BCMA)-CD3 Bispecific Antibody, in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2020, 136, 8–9. [Google Scholar]
- Levy, M.; Bahlis, N.; Raje, N.; Costello, C.; Dholaria, B.; Solh, M.; Tomasson, M.; Dube, H.; Damore, M.; Lon, H.K.; et al. MM-379: MagnetisMM-1: A Study of Elranatamab (PF-06863135), a B-Cell Maturation Antigen (BCMA)-Targeted, CD3-Engaging Bispecific Antibody, for Patients with Relapsed or Refractory Multiple Myeloma (MM). Clin. Lymphoma Myeloma Leuk. 2021, 21, S439. [Google Scholar]
- Brischwein, K.; Schlereth, B.; Guller, B.; Steiger, C.; Wolf, A.; Lutterbuese, R.; Offner, S.; Locher, M.; Urbig, T.; Raum, T.; et al. MT110: A novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol. Immunol. 2006, 43, 1129–1143. [Google Scholar]
- Madduri, D.; Rosko, A.; Brayer, J.; Zonder, J.; Bensinger, W.I.; Li, J.; Xu, L.; Adriaens, L.; Chokshi, D.; Zhang, W.; et al. REGN5458, a BCMA × CD3 Bispecific Monoclonal Antibody, Induces Deep and Durable Responses in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2020, 136, 41–42. [Google Scholar]
- DiLillo, D.J.; Olson, K.; Mohrs, K.; Meagher, T.C.; Bray, K.; Sineshchekova, O.; Startz, T.; Kuhnert, J.; Retter, M.W.; Godin, S.; et al. A BCMA × CD3 bispecific T cell–engaging antibody demonstrates robust antitumor efficacy similar to that of anti-BCMA CAR T cells. Blood Adv. 2021, 5, 1291–1304. [Google Scholar] [PubMed]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 2019, 11, 485. [Google Scholar]
- Berdeja, J.G.; Krishnan, A.Y.; Oriol, A.; van de Donk, N.W.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.V.; Minnema, M.C.; Costa, L.J.; Verona, R.; et al. Updated results of a phase 1, first-in-human study of talquetamab, a G protein-coupled receptor family C group 5 member D (GPRC5D) × CD3 bispecific antibody, in relapsed/refractory multiple myeloma (MM). J. Clin. Oncol. 2021, 39, 40–41. [Google Scholar]
- A Phase 1/2, First-in-Human, Open-Label, Dose Escalation Study of Talquetamab, a Humanized Gprc5d × CD3 Bispecific Antibody, in Subjects with Relapsed or Refractory Multiple Myeloma. Available online: https://clinicaltrials.gov/ct2/show/NCT03399799 (accessed on 18 March 2022).
- A Phase 1b Dose Escalation Study of the Combination of the Bispecific T Cell Redirection Antibodies Talquetamab and Teclistamab in Participants with Relapsed or Refractory Multiple Myeloma. Available online: https://clinicaltrials.gov/ct2/show/NCT04586426 (accessed on 18 March 2022).
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar]
- Sharma, P.; Kanapuru, B.; George, B.; Lin, X.; Xu, Z.; Bryan, W.W.; Pazdur, R.; Theoret, M.R. FDA Approval Summary: Idecabtagene Vicleucel for Relapsed or Refractory Multiple Myeloma. Clin. Cancer Res. 2022. Available online: https://aacrjournals.org/clincancerres/article-abstract/doi/10.1158/1078-0432.CCR-21-3803/678442/FDA-Approval-Summary-Idecabtagene-Vicleucel-for?redirectedFrom=fulltext (accessed on 18 March 2022).
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; et al. Updated Results from CARTITUDE-1: Phase 1b/2Study of Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy, in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2021, 138, 549. [Google Scholar]
- Cohen, Y.C.; Cohen, A.D.; Delforge, M.; Hillengass, J.; Goldschmidt, H.; Weisel, K.; Raab, M.-S.; Scheid, C.; Schecter, J.M.; De Braganca, K.C.; et al. Efficacy and Safety of Ciltacabtagene Autoleucel (Cilta-cel), a B-Cell Maturation Antigen (BCMA)-Directed Chimeric Antigen Receptor (CAR) T-Cell Therapy, in Lenalidomide-Refractory Patients with Progressive Multiple Myeloma after 1-3 Prior Lines of Therapy: Updated Results from CARTITUDE-2. Blood 2021, 138, 3866. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, W.; Wahab, A.; Franco, D.; Shah, Z.; Ashraf, A.; Abid, Q.-U.-A.; Mohammed, Y.N.; Lal, D.; Anwer, F. Emerging Role of Antibody-Drug Conjugates and Bispecific Antibodies for the Treatment of Multiple Myeloma. Antibodies 2022, 11, 22. https://doi.org/10.3390/antib11020022
Tai W, Wahab A, Franco D, Shah Z, Ashraf A, Abid Q-U-A, Mohammed YN, Lal D, Anwer F. Emerging Role of Antibody-Drug Conjugates and Bispecific Antibodies for the Treatment of Multiple Myeloma. Antibodies. 2022; 11(2):22. https://doi.org/10.3390/antib11020022
Chicago/Turabian StyleTai, Waqqas, Ahsan Wahab, Diana Franco, Zunairah Shah, Aqsa Ashraf, Qurrat-Ul-Ain Abid, Yaqub Nadeem Mohammed, Darshan Lal, and Faiz Anwer. 2022. "Emerging Role of Antibody-Drug Conjugates and Bispecific Antibodies for the Treatment of Multiple Myeloma" Antibodies 11, no. 2: 22. https://doi.org/10.3390/antib11020022
APA StyleTai, W., Wahab, A., Franco, D., Shah, Z., Ashraf, A., Abid, Q. -U. -A., Mohammed, Y. N., Lal, D., & Anwer, F. (2022). Emerging Role of Antibody-Drug Conjugates and Bispecific Antibodies for the Treatment of Multiple Myeloma. Antibodies, 11(2), 22. https://doi.org/10.3390/antib11020022