Introduction to Antibody-Drug Conjugates
Abstract
:1. Introduction
2. The Immune System
2.1. Antibodies
- Monoclonal antibodies (mAbs),
- Bispecific Antibodies, and
- Antibody Drug Conjugates (ADCs).
2.2. Monoclonal Antibodies (mAbs)
2.3. Bispecific Antibodies
2.4. Antibody Drug Conjugates (ADCs)
- A monoclonal antibody (mAb) that targets a specific cancer antigen while not harming healthy cells.
- A potent cytotoxic small molecular agent with high systemic toxicity designed to induce target cell death after being internalized in the tumor cell and discharged.
- A linker stable in circulation which releases the medicinal preparation in neoplasms.
- Monoclonal antibodies covalently linked to small molecular cytotoxic preparations that focus on the specific cancer cell to reduce total systemic toxicity.
- Strengthens the cytotoxic potential of mAbs.
- Induces higher tumor selectivity while improving the tolerability of the drug.
- As opposed to standard chemotherapeutic biologics or drugs, there is limited systemic exposure [24].
3. Linker Technologies
3.1. Current Linker Technologies
3.2. Non-Cleavable Linkers
3.3. Cleavable Linkers
- Chemically labile linkers,
- Acid-cleavable linkers, and
- Reducible linkers.
- (a)
- Chemically Labile Linkers
- (b)
- Acid-Cleavable Linkers
- (c)
- Reducible Linkers
3.4. Enzyme Cleavable Linkers
- Peptide-based linkers, and
- β-Glucuronide linkers.
3.4.1. Peptide-Based Linkers
3.4.2. β-Glucuronide Linkers
4. Cytotoxic Payload
5. Drug-Antibody Ratio (DAR)
6. Glycosylation
7. Pegylation
8. Charge
9. Pharmacokinetics
10. Preclinical Studies of ADCs
11. Adverse Effects of ADCs
12. Anticipated Directives of Antibody Drug Conjugates
- (1)
- Patients preferred for target neoplasm antigen expression, satisfactory reactions recorded in those individuals involving gene amplification or high expression.
- (2)
- Dosage-limited off-mark cytotoxicity should be less than what is anticipated from medicinal payload.
- (3)
- Verify the medical preparation payload is applicable for the indications for use.
13. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ducry, L.; Stump, B. Antibody—Drug conjugates: Linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem. 2010, 21, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Kvirkvelia, N.; Chikadze, N.; Makinde, J.; McBride, J.D.; Porakishvili, N.; Hills, F.A.; Martensen, P.M.; Justesen, J.; Delves, P.J.; Lund, T.; et al. Investigation of factors influencing the immunogenicity of hCG as a potential cancer vaccine. Clin. Exp. Immunol. 2018, 193, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, N.; Setua, S.; Kashyap, V.K.; Khan, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Antibody-Drug Conjugates for Cancer Therapy: Chemistry to Clinical Implications. Pharmaceuticals 2018, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casi, G.; Neri, D. Antibody-drug conjugates: Basic concepts, examples and future perspectives. J. Control Release 2012, 161, 422–428. [Google Scholar] [CrossRef]
- Sassoon, I.; Blanc, V. Antibody-drug conjugate (ADC) clinical pipeline: A review. Methods Mol. Biol. 2013, 1045, 1–27. [Google Scholar]
- Ducry, L. (Ed.) Antibody-Drug Conjugates; Springer Science: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hinrichs, M.J.M.; Dixit, R. Antibody drug conjugates: Nonclinical safety considerations. AAPS J. 2015, 17, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, G.S. Antibody-drug conjugates for cancer therapy: The technological and regulatory challenges of developing drug-biologic hybrids. Biologicals 2015, 43, 318–332. [Google Scholar] [CrossRef]
- Lambert, J.M. Antibody-Drug Conjugates (ADCs): Magic Bullets at Last! Mol. Pharm. 2015, 12, 1701–1702. [Google Scholar] [CrossRef]
- Diamantis, N.; Banerji, U. Antibody-drug conjugates—An emerging class of cancer treatment. Br. J. Cancer 2016, 114, 362–367. [Google Scholar] [CrossRef]
- Mahmood, I. Clinical Pharmacology of Antibody-Drug Conjugates. Antibodies 2021, 10, 20. [Google Scholar] [CrossRef]
- Torre, B.G.; Albericio, F. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules. Molecules 2021, 26, 627. [Google Scholar] [CrossRef]
- Immune System Explained; Department of Health & Human Services, State Government of Victoria: Melbourne, Australia, 2017.
- Siegel, D.L. Recombinant monoclonal antibody technology. Transfus. Clinique Biologique 2002, 9, 15–22. [Google Scholar] [CrossRef]
- King, D.J. Applications and Engineering of Monoclonal Antibodies; Taylor and Francis: Philadelphia, PA, USA, 1998. [Google Scholar]
- Frazier, J.K.; Capra, J.D. Immunoglobulins Structure and Function. In Fundamental Immunology, 4th ed.; Lippincott-Raven: Philadelphia, PA, USA, 1999; pp. 37–74. [Google Scholar]
- Penichet, M.L.; Morrison, S.L. Design and engineering human forms of monoclonal antibodies. Drug Dev. Res. 2004, 61, 121–136. [Google Scholar] [CrossRef]
- Berry, J.D. Rational monoclonal antibody development to emerging pathogens, biothreat agents and agents of foreign animal disease: The antigen scale. Vet. J. 2005, 170, 193–211. [Google Scholar] [CrossRef]
- Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and methods for T-and B-cell epitope prediction. J. Immunol. Res. 2017, 2017, 2680160. [Google Scholar] [CrossRef] [Green Version]
- Shim, H. Bispecific antibodies and antibody–drug conjugates for cancer therapy: Technological considerations. Biomolecules 2020, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Andreev, J.; Thambi, N.; Bay, A.E.P.; Delfino, F.; Martin, J.; Kelly, M.P.; Kirshner, J.R.; Rafique, A.; Kunz, A.; Nittoli, T.; et al. Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther. 2017, 16, 681–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruani, A. Bispecifics and antibody–drug conjugates: A positive synergy. Drug Discov. Today Technol. 2018, 30, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, C.; Schaefer, W.; Regula, J.T.; Dumontet, C.; Brinkmann, U.; Bacac, M.; Umaña, P. Engineering therapeutic bispecific antibodies using CrossMab technology. Methods 2019, 154, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Kovtun, Y.V.; Goldmacher, V.S. Cell killing by antibody–drug conjugates. Cancer Lett. 2007, 255, 232–240. [Google Scholar] [CrossRef]
- Belantamab Mafodotin-Blmf FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761158s000lbl.pdf (accessed on 5 October 2021).
- Brentuximab Vedotin FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125554s090lbl.pdf (accessed on 5 October 2021).
- Enfortumab Vedotin FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761137s000lbl.pdf (accessed on 5 October 2021).
- Gemtuzumab Ozogamicin FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761060lbl.pdf (accessed on 5 October 2021).
- Inotuzumab Ozogamicin FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761040s000lbl.pdf (accessed on 5 October 2021).
- Loncastuximab Tesirine-Lpyl FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761196s000lbl.pdf (accessed on 5 October 2021).
- Polatuzumab Vedotin FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761121s000lbl.pdf (accessed on 5 October 2021).
- Sacituzumab Govitecan-Hziy FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761115s000lbl.pdf (accessed on 5 October 2021).
- Trastuzumab Deruxtecan FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761139s011lbl.pdf (accessed on 5 October 2021).
- Trastuzumab Emtansine FDA Package Insert. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761139s000lbl.pdf (accessed on 5 October 2021).
- Tsuchikama, K. Novel Chemical Linkers for Next-generation Antibody-drugConjugates (ADCs). Yakugaku Zasshi 2019, 139, 209–219. [Google Scholar] [CrossRef]
- Tsuchikama, K.; An, Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell. 2018, 9, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walles, M.; Connor, A.; Hainzl, D. ADME and Safety Aspects of Non-cleavable Linkers in Drug Discovery and Development. Curr. Top. Med. Chem. 2017, 17, 3463–3475. [Google Scholar] [CrossRef]
- Filntisi, A.; Vlachakis, D.; Matsopoulos, G.K.; Kossida, S. Computational construction of antibody–drug conjugates using surface lysines as the antibody conjugation site and a non-cleavable linker. Cancer Inform. 2014, 13, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorywalska, M.; Strop, P.; Melton-Witt, J.A.; Hasa-Moreno, A.; Farias, S.E.; Galindo Casas, M.; Delaria, K.; Lui, V.; Poulsen, K.; Sutton, J.; et al. Site-dependent degradation of a non-cleavable auristatin-based linker-payload in rodent plasma and its effect on ADC efficacy. PLoS ONE 2015, 10, e0132282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody–drug conjugates. Chem. Soc. Rev. 2019, 48, 4361–4374. [Google Scholar] [CrossRef]
- Nolting, B. Linker technologies for antibody-drug conjugates. Methods Mol. Biol. 2013, 1045, 71–100. [Google Scholar]
- Castañeda, L.; Maruani, A.; Schumacher, F.F.; Miranda, E.; Chudasama, V.; Chester, K.A.; Baker, J.R.; Smith, M.E.B.; Caddick, S. Acid-cleavable thiomaleamic acid linker for homogeneous antibody–drug conjugation. Chem. Commun. 2013, 49, 8187–8189. [Google Scholar] [CrossRef] [Green Version]
- Son, S.; Namgung, R.; Kim, J.; Singha, K.; Kim, W.J. Bioreducible polymers for gene silencing and delivery. Acc. Chem. Res. 2012, 45, 1100–1112. [Google Scholar] [CrossRef]
- Xue, Y.; Bai, H.; Peng, B.; Fang, B.; Baell, J.; Li, L.; Huang, W.; Voelcker, N.H. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem. Soc. Rev. 2021, 50, 4872–4931. [Google Scholar] [CrossRef]
- Su, F.Y.; Srinivasan, S.; Lee, B.; Chen, J.; Convertine, A.J.; West, T.E.; Ratner, D.M.; Skerrett, S.J.; Stayton, P.S. Macrophage-targeted drugamers with enzyme-cleavablelinkers deliver high intracellular drug dosing and sustained drug pharmacokinetics against alveolar pulmonary infections. J. Control. Release 2018, 287, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, G.; Kang, C.M.; McDougald, D.; Minn, I.; Brummet, M.; Pomper, M.G.; Zalutsky, M.R. Brush border enzyme-cleavable linkers: Evaluation for reducing renal uptake of radiolabeled prostate-specific membrane antigen inhibitors. Nucl. Med. Biol. 2018, 62, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Wang, Y.; Huang, X.; Hou, H.; Zhou, S. Peptide-based nanocarriers for cancer therapy. Small Methods 2018, 2, 1700358. [Google Scholar] [CrossRef]
- Tamerler, C.; Sarikaya, M. Genetically designed peptide-based molecular materials. ACS Nano 2009, 3, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Muppidi, A.; Doi, K.; Ramil, C.P.; Wang, H.G.; Lin, Q. Synthesis of cell-permeable stapled BH3 peptide-based Mcl-1 inhibitors containing simple aryl and vinylaryl cross-linkers. Tetrahedron 2014, 70, 7740–7745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregson, S.J.; Barrett, A.M.; Patel, N.V.; Kang, G.-D.; Schiavone, D.; Sult, E.; Barry, C.S.; Vijayakrishnan, B.; Adams, L.R.; Masterson, L.A.; et al. Synthesis and evaluation of pyrrolobenzodiazepine dimer antibody-drug conjugates with dual β-glucuronide and dipeptide triggers. Eur. J. Med. Chem. 2019, 179, 591–607. [Google Scholar] [CrossRef]
- Jeffrey, S.C.; Andreyka, J.B.; Bernhardt, S.X.; Kissler, K.M.; Kline, T.; Lenox, J.S.; Moser, R.F.; Nguyen, M.T.; Okeley, N.M.; Stone, I.J.; et al. Development and properties of β-glucuronide linkers for monoclonal antibody− drug conjugates. Bioconjug. Chem. 2006, 17, 831–840. [Google Scholar] [CrossRef]
- Renoux, B.; Legigan, T.; Bensalma, S.; Chadéneau, C.; Muller, J.M.; Papot, S. A new cyclopamine glucuronide prodrug with improved kinetics of drug release. Org. Biomol. Chem. 2011, 9, 8459–8464. [Google Scholar] [CrossRef]
- Goldmacher, V.S.; Kovtun, Y.V. Antibody–drug conjugates: Using monoclonal antibodies for delivery of cytotoxic payloads to cancer cells. Ther. Deliv. 2011, 2, 397–416. [Google Scholar] [CrossRef] [Green Version]
- Kolakowski, R.V.; Haelsig, K.T.; Emmerton, K.K.; Leiske, C.I.; Miyamoto, J.B.; Cochran, J.H.; Lyon, R.P.; Senter, P.D.; Jeffrey, S.C. The Methylene Alkoxy Carbamate Self-Immolative Unit: Utilization for the Targeted Delivery of Alcohol-Containing Payloads with Antibody-Drug Conjugates. Angew. Chem. 2016, 128, 8080–8083. [Google Scholar] [CrossRef]
- Chari, R.V.J. Expanding the Reach of Antibody–Drug Conjugates. ACS Med. Chem. Lett. 2016, 7, 974–976. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Lambert, J.M.; Chari, R.V.J. Antibody-Drug Conjugates: New Frontier in Cancer Therapeutics. In Handbook of Therapeutic Antibodies; Wiley Online Library: Hoboken, NJ, USA, 2014; pp. 341–362. [Google Scholar]
- Sagaert, X.; De Hertogh, G. The Large Bowel. In Pathobiology of Human Disease; McManus, L.M., Mitchell, R.N., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 1288–1296. [Google Scholar]
- The American Museum of Natural History. The Power of Poison Exhibition. 2021. Available online: https://www.amnh.org/exhibitions/the-power-of-poison (accessed on 5 October 2021).
- Gao, M.; Fei, B.; Huang, G.; Diao, Q. Nature-derived anticancer steroids outside cardica glycosides. Fitoterapia 2020, 147, 104757. [Google Scholar]
- Sun, X.; Ponte, J.F.; Yoder, N.C.; Laleau, R.; Coccia, J.; Lanieri, L.; Qiu, Q.; Wu, R.; Hong, E.; Bogalhas, M.; et al. Effects of Drug–Antibody Ratio on Pharmacokinetics, Biodistribution, Efficacy, and Tolerability of Antibody–Maytansinoid Conjugates. Bioconjug. Chem. 2017, 28, 1371–1381. [Google Scholar] [CrossRef]
- Gébleux, R.; Casi, G. Antibody-drug conjugates: Current status and future perspectives. Pharmacol. Ther. 2016, 167, 48–59. [Google Scholar] [CrossRef]
- Xu, K.; Liu, L.; Dere, R.; Mai, E.; Erickson, R.; Hendricks, A.; Lin, K.; Junutula, J.R.; Kaur, S. Characterization of the drug-to-antibody ratio distribution for antibody–drug conjugates in plasma/serum. Bioanalysis 2013, 5, 1057–1071. [Google Scholar] [CrossRef]
- Drickamer, K.; Taylor, M.E. Evolving views of protein glycosylation. Trends Biochem. Sci. 1998, 23, 321–324. [Google Scholar] [CrossRef]
- Leelawattanachai, J.; Kwon, K.W.; Michael, P.; Ting, R.; Kim, J.Y.; Jin, M.M. Side-by-side comparison of commonly used biomolecules that differ in size and affinity on tumor uptake and internalization. PLoS ONE 2015, 10, e0124440. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Stefano, J.E.; Manning, C.; Kyazike, J.; Chen, B.; Gianolio, D.A.; Park, A.; Busch, M.; Bird, J.; Zheng, X.; et al. Site-Specific Antibody–Drug Conjugation through Glycoengineering. Bioconjug. Chem 2014, 25, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, A.; Charles, S.A.; Harris, J.M. Development of pegylated interferons for the treatment of chronic hepatitis C. BioDrugs 2001, 15, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, T.; Tabata, Y.; Ikada, Y. Distribution and tissue uptake of poly (ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 1994, 83, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, Y.; Harris, J. Effects of coupling chemistry on activity of a polyethylene glycol-modified enzyme. J. Bioact. Comp. Polym. 1989, 4, 17–24. [Google Scholar] [CrossRef]
- Burke, P.J.; Hamilton, J.Z.; Jeffrey, S.C.; Hunter, J.H.; Doronina, S.O.; Okeley, N.M.; Miyamoto, J.B.; Anderson, M.E.; Stone, I.J.; Ulrich, M.L.; et al. Optimization of a PEGylated Glucuronide-Monomethylauristatin E Linker for Antibody-Drug Conjugates. Mol. Cancer Ther. 2017, 16, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoef, J.J.; Anchordoquy, T.J. Questioning the use of PEGylation for drug delivery. Drug Deliv. Transl. Res. 2013, 3, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Boswell, C.A.; Tesar, D.B.; Mukhyala, K.; Theil, F.; Fielder, P.J.; Khawli, L.A. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug. Chem. 2010, 21, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 2021, 18, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I.; Green, M.D. Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin. Pharmacokinet. 2005, 44, 331–347. [Google Scholar] [CrossRef]
- Wagner, J. Kinetics of pharmacologic response I. Proposed relationships between response and drug concentration in the intact animal and man. J. Theor. Biol. 1968, 20, 173–201. [Google Scholar] [CrossRef]
- Zhao, L.; Ji, P.; Li, Z.; Roy, P.; Sahajwalla, C.G. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic. J. Clin. Pharmacol. 2013, 53, 314–325. [Google Scholar] [CrossRef]
- Tabrizi, M.; Bornstein, G.G.; Suria, H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010, 12, 33–43. [Google Scholar] [CrossRef]
- Ferri, N.; Bellosta, S.; Baldessin, L.; Boccia, D.; Racagni, G.; Corsini, A. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol. Res. 2016, 111, 592–599. [Google Scholar] [CrossRef]
- Kaur, S.; Xu, K.; Saad, O.M.; Dere, R.C.; Carrasco-Triguero, M. Bioanalytical assay strategies for the development of antibody–drug conjugate biotherapeutics. Bioanalysis 2013, 5, 201–226. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.V.; Iyer, S. Preclinical pharmacokinetic considerations for the development of antibody drug conjugates. Pharm. Res. 2015, 32, 3470–3479. [Google Scholar] [CrossRef] [Green Version]
- Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. In MAbs; Taylor & Francis: London, UK, 2016; Volume 8, pp. 659–671. [Google Scholar]
- Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody–drug conjugates: A comprehensive review. Mol. Cancer Res. 2020, 18, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.; Teicher, B.A.; Hassan, R. Antibody–drug conjugates for cancer therapy. Lancet Oncol. 2016, 17, e254–e262. [Google Scholar] [CrossRef]
- Coats, S.; Williams, M.; Kebble, B.; Dixit, R.; Tseng, L.; Yao, N.S.; Soria, J.C. Antibody–drug conjugates: Future directions in clinical and translational strategies to improve the therapeutic index. Clin. Cancer Res. 2019, 25, 5441–5448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trade Name | Generic Name | Conjugate | Indication | Target | Year of Approval |
---|---|---|---|---|---|
MYLOTARG | Gemtuzumab ozogamicin | Calicheamicin | Hematological | CD33 | 2010/2017 |
ADCETRIS | Brentuximab vedotin | Monomethyl auristatin E (MMAE) | Hematological | CD30 | 2011 |
BESPONSA | Inotuzumab ozogamicin | Calicheamicin | Hematological | CD22 | 2017 |
POLIVY | Polatuzumab vedotin | Monomethyl auristatin E (MMAE) | Hematological | CD79b | 2019 |
KADCYLA | Trastuzumab emtansine | Myatansinoid (DM1) | Solid tumor | HER2 | 2013 |
ENHERTU | Trastuzumab deruxtecan | Deruxtecan (Dxd) | Solid tumor | HER2 | 2019 |
PADCEV | Enfortumab vedotin | Monomethyl auristatin E (MMAE) | Solid tumor | Nectin-4 | 2019 |
TRODELVY | Sacituzumab govitecan | Govitecan SN-38 | Solid tumor | Trop-2 | 2020 |
BLENREP | Belantamab mafodotin | Microtubule inhibitor MMAF | Myeloma | BCMA | 2020 |
ZYNLONTA | Loncastuximab tesirine-lpyl | SG3199 | B-cell lymphoma | CD19 | 2021 |
ADC Linker Technology | Release Mechanism |
---|---|
Disulfide | Designed to be cleaved through disulfide exchange with an intracellular thiol, such as glutathione. |
Hydrazone | Designed for serum stability and degradation in acidic compartments within the cytoplasm. |
Peptide | Designed to be enzymatically hydrolyzed by lysosomal proteases such as cathepsin B. |
Theoeither | Nonreducible and designed for intracellular proteolytic degradation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettinato, M.C. Introduction to Antibody-Drug Conjugates. Antibodies 2021, 10, 42. https://doi.org/10.3390/antib10040042
Pettinato MC. Introduction to Antibody-Drug Conjugates. Antibodies. 2021; 10(4):42. https://doi.org/10.3390/antib10040042
Chicago/Turabian StylePettinato, Mark C. 2021. "Introduction to Antibody-Drug Conjugates" Antibodies 10, no. 4: 42. https://doi.org/10.3390/antib10040042
APA StylePettinato, M. C. (2021). Introduction to Antibody-Drug Conjugates. Antibodies, 10(4), 42. https://doi.org/10.3390/antib10040042